0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A comprehensive survey on the biomedical signal processing methods for the detection of COVID-19

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The novel coronavirus, renamed SARS-CoV-2 and most commonly referred to as COVID-19, has infected nearly 44.83 million people in 224 countries and has been designated SARS-CoV-2. In this study, we used ‘web of Science’, ‘Scopus’ and ‘goggle scholar’ with the keywords of “SARS-CoV-2 detection” or “coronavirus 2019 detection” or “COVID 2019 detection” or “COVID 19 detection” “corona virus techniques for detection of COVID-19”, “audio techniques for detection of COVID-19”, “speech techniques for detection of COVID-19”, for period of 2019–2021. Some COVID-19 instances have an impact on speech production, which suggests that researchers should look for signs of disease detection in speech utilising audio and speech recognition signals from humans to better understand the condition. It is presented in this review that an overview of human audio signals is presented using an AI (Artificial Intelligence) model to diagnose, spread awareness, and monitor COVID-19, employing bio and non-obtrusive signals that communicated human speech and non-speech audio information is presented. Development of accurate and rapid screening techniques that permit testing at a reasonable cost is critical in the current COVID-19 pandemic crisis, according to the World Health Organization. In this context, certain existing investigations have shown potential in the detection of COVID 19 diagnostic signals from relevant auditory noises, which is a promising development. According to authors, it is not a single “perfect” COVID-19 test that is required, but rather a combination of rapid and affordable tests, non-clinic pre-screening tools, and tools from a variety of supply chains and technologies that will allow us to safely return to our normal lives while we await the completion of the hassle free COVID-19 vaccination process for all ages. This review was able to gather information on biomedical signal processing in the detection of speech, coughing sounds, and breathing signals for the purpose of diagnosing and screening the COVID-19 virus.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          The PRISMA 2020 statement: An updated guideline for reporting systematic reviews

          The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement, published in 2009, was designed to help systematic reviewers transparently report why the review was done, what the authors did, and what they found. Over the past decade, advances in systematic review methodology and terminology have necessitated an update to the guideline. The PRISMA 2020 statement replaces the 2009 statement and includes new reporting guidance that reflects advances in methods to identify, select, appraise, and synthesise studies. The structure and presentation of the items have been modified to facilitate implementation. In this article, we present the PRISMA 2020 27-item checklist, an expanded checklist that details reporting recommendations for each item, the PRISMA 2020 abstract checklist, and the revised flow diagrams for original and updated reviews.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular diagnostic technologies for COVID-19: Limitations and challenges

            Graphical abstract
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A Novel Medical Diagnosis model for COVID-19 infection detection based on Deep Features and Bayesian Optimization

              A pneumonia of unknown causes, which was detected in Wuhan, China, and spread rapidly throughout the world, was declared as Coronavirus disease 2019 (COVID-19). Thousands of people have lost their lives to this disease. Its negative effects on public health are ongoing. In this study, an intelligence computer-aided model that can automatically detect positive COVID-19 cases is proposed to support daily clinical applications. The proposed model is based on the convolution neural network (CNN) architecture and can automatically reveal discriminative features on chest X-ray images through its convolution with rich filter families, abstraction, and weight-sharing characteristics. Contrary to the generally used transfer learning approach, the proposed deep CNN model was trained from scratch. Instead of the pre-trained CNNs, a novel serial network consisting of five convolution layers was designed. This CNN model was utilized as a deep feature extractor. The extracted deep discriminative features were used to feed the machine learning algorithms, which were k-nearest neighbor, support vector machine (SVM), and decision tree. The hyperparameters of the machine learning models were optimized using the Bayesian optimization algorithm. The experiments were conducted on a public COVID-19 radiology database. The database was divided into two parts as training and test sets with 70% and 30% rates, respectively. As a result, the most efficient results were ensured by the SVM classifier with an accuracy of 98.97%, a sensitivity of 89.39%, a specificity of 99.75%, and an F-score of 96.72%. Consequently, a cheap, fast, and reliable intelligence tool has been provided for COVID-19 infection detection. The developed model can be used to assist field specialists, physicians, and radiologists in the decision-making process. Thanks to the proposed tool, the misdiagnosis rates can be reduced, and the proposed model can be used as a retrospective evaluation tool to validate positive COVID-19 infection cases.
                Bookmark

                Author and article information

                Journal
                Ann Med Surg (Lond)
                Ann Med Surg (Lond)
                Annals of Medicine and Surgery
                Published by Elsevier Ltd on behalf of IJS Publishing Group Ltd.
                2049-0801
                1 April 2022
                1 April 2022
                : 103519
                Affiliations
                [a ]Electronics and Communication Engineering, Mody University of Science and Technology, India
                [b ]Mechanical Engineering, Mody University of Science and Technology, India
                [c ]Biomedical Engineering, Mody University of Science and Technology, India
                Author notes
                []Corresponding author.
                Article
                S2049-0801(22)00279-5 103519
                10.1016/j.amsu.2022.103519
                8975609
                7cdd9a06-5ded-4175-a732-3c3ab122f61f
                © 2022 Published by Elsevier Ltd on behalf of IJS Publishing Group Ltd.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 1 February 2022
                : 9 March 2022
                : 26 March 2022
                Categories
                Review

                signal processing,covid 19,artificial intelligence,audio,speech

                Comments

                Comment on this article