2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phylogenetic relationship of subterranean termite Coptotermes gestroi (Blattodea: Rhinotermitidae) inhabiting urban and natural habitats

      research-article
      a , a , b ,
      Heliyon
      Elsevier
      Coptotermes gestroi, CO1, 16S rRNA, Phylogenetics, Genetic diversity

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Coptotermes termites were collected from forestry habitats at University Sains Malaysia, Penang, while urban samples were collected from residentials from Penang and Kedah, Malaysia. Mitochondrial DNA markers, Cytochrome Oxidase 1 (CO1), and 16S ribosomal RNA (16S rRNA) genes were amplified and sequenced to confirm the species of the termite samples as Coptotermes gestroi. Through Blastn, all 25 CO1 and 16S rRNA sequences, respectively from urban and natural habitats were found to be 99.54–100.00 % similar to C. gestroi reference sequences from previous studies in Peninsular Malaysia. The phylogenetic trees constructed using Neighboring-joining (NJ) and Maximum Likelihood (ML) methods resulted in CO1 sequences clustering in two clades and 16S rRNA sequences clustering in a single clade. The overall mean distance was low for the C. gestroi populations from natural habitats and urban settings (F ST = 0.004). Analysis of natural habitat populations using CO1 sequences revealed two haplotypes within the population, with a haplotype diversity (Hd) of 0.045 ± 0.005, while the urban population shared a common haplotype with the natural habitat populations and there was no haplotype diversity recorded between the populations. Urban and natural habitats included only one haplotype for 16S rRNA sequences, indicating a lack of nucleotide diversity. Based on the findings, a non-significant difference between the natural habitat and urban population suggests C. gestroi inhabiting both regions likely originated from a similar source and underwent population homogeneity in different settings facilitated by anthropogenic dispersal.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          MEGA11: Molecular Evolutionary Genetics Analysis Version 11

          The Molecular Evolutionary Genetics Analysis (MEGA) software has matured to contain a large collection of methods and tools of computational molecular evolution. Here, we describe new additions that make MEGA a more comprehensive tool for building timetrees of species, pathogens, and gene families using rapid relaxed-clock methods. Methods for estimating divergence times and confidence intervals are implemented to use probability densities for calibration constraints for node-dating and sequence sampling dates for tip-dating analyses. They are supported by new options for tagging sequences with spatiotemporal sampling information, an expanded interactive Node Calibrations Editor , and an extended Tree Explorer to display timetrees. Also added is a Bayesian method for estimating neutral evolutionary probabilities of alleles in a species using multispecies sequence alignments and a machine learning method to test for the autocorrelation of evolutionary rates in phylogenies. The computer memory requirements for the maximum likelihood analysis are reduced significantly through reprogramming, and the graphical user interface has been made more responsive and interactive for very big data sets. These enhancements will improve the user experience, quality of results, and the pace of biological discovery. Natively compiled graphical user interface and command-line versions of MEGA11 are available for Microsoft Windows, Linux, and macOS from www.megasoftware.net .
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Insect mitochondrial genomics: implications for evolution and phylogeny.

            The mitochondrial (mt) genome is, to date, the most extensively studied genomic system in insects, outnumbering nuclear genomes tenfold and representing all orders versus very few. Phylogenomic analysis methods have been tested extensively, identifying compositional bias and rate variation, both within and between lineages, as the principal issues confronting accurate analyses. Major studies at both inter- and intraordinal levels have contributed to our understanding of phylogenetic relationships within many groups. Genome rearrangements are an additional data type for defining relationships, with rearrangement synapomorphies identified across multiple orders and at many different taxonomic levels. Hymenoptera and Psocodea have greatly elevated rates of rearrangement offering both opportunities and pitfalls for identifying rearrangement synapomorphies in each group. Finally, insects are model systems for studying aberrant mt genomes, including truncated tRNAs and multichromosomal genomes. Greater integration of nuclear and mt genomic studies is necessary to further our understanding of insect genomic evolution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The evolution of fungus-growing termites and their mutualistic fungal symbionts.

              We have estimated phylogenies of fungus-growing termites and their associated mutualistic fungi of the genus Termitomyces using Bayesian analyses of DNA sequences. Our study shows that the symbiosis has a single African origin and that secondary domestication of other fungi or reversal of mutualistic fungi to a free-living state has not occurred. Host switching has been frequent, especially at the lower taxonomic levels, and nests of single termite species can have different symbionts. Data are consistent with horizontal transmission of fungal symbionts in both the ancestral state of the mutualism and most of the extant taxa. Clonal vertical transmission of fungi, previously shown to be common in the genus Microtermes (via females) and in the species Macrotermes bellicosus (via males) [Johnson, R. A., Thomas, R. J., Wood, T. G. & Swift, M. J. (1981) J. Nat. Hist. 15, 751-756], is derived with two independent origins. Despite repeated host switching, statistical tests taking phylogenetic uncertainty into account show a significant congruence between the termite and fungal phylogenies, because mutualistic interactions at higher taxonomic levels show considerable specificity. We identify common characteristics of fungus-farming evolution in termites and ants, which apply despite the major differences between these two insect agricultural systems. We hypothesize that biparental colony founding may have constrained the evolution of vertical symbiont transmission in termites but not in ants where males die after mating.
                Bookmark

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                14 December 2023
                15 January 2024
                14 December 2023
                : 10
                : 1
                : e23692
                Affiliations
                [a ]Household & Structural Urban Entomology Laboratory, School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
                [b ]Centre for Insect Systematics (CIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
                Author notes
                []Corresponding author.Household & Structural Urban Entomology Laboratory, School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia. abdhafiz@ 123456usm.my
                Article
                S2405-8440(23)10900-5 e23692
                10.1016/j.heliyon.2023.e23692
                10772638
                38192757
                7d685584-704e-4afa-a5eb-64b4d17e0101
                © 2023 The Authors. Published by Elsevier Ltd.

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 6 May 2023
                : 30 November 2023
                : 9 December 2023
                Categories
                Research Article

                coptotermes gestroi,co1,16s rrna,phylogenetics,genetic diversity

                Comments

                Comment on this article