Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fixation of pelvic acetabular fractures using 3D-printed fracture plates: a cadaver study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Open reduction and internal fixation of pelvic acetabular fractures are challenging due to the limited surgical exposure from surrounding abdominal tissue. There have been a number of recent trials using metallic 3D-printed pelvic fracture plates to simplify and improve various elements of these fracture fixation surgeries; however, the amount of time and accuracy involved in the design and implantation of customised plates have not been well characterised. This study recorded the amount of time related to the design, manufacture and implantation of six customised fracture plates for five cadaveric pelvic specimens with acetabular fracture, while manufacturing, and surgical accuracy was calculated from computed tomography imaging. Five of the fracture plates were designed within 9.5 h, while the plate for a pelvis with a pre-existing fracture plate took considerably longer (20.2 h). Manufacturing comprised 3D-printing the plates in Ti6Al4V with a sintered laser melting (SLM) 3D-printer and post-processing (heat treatment, smoothing, tapping threads). The manufacturing times varied from 27.0 to 32.5 h, with longer times related to machining a thread for locking-head screws with a multi-axis computer numerical control (CNC) mill. For the surface of the plate in contact with the bone, the root-mean-square errors of the print varied from 0.10 to 0.49 mm. The upper range of these errors was likely the result of plate designs that were relatively long with thin cross-sections, a combination that gives rise to high thermal stresses when using a SLM 3D-printer. A number of approaches were explored to control the trajectories of locking or non-locking head screws including guides, printed threads or hand-taps; however, the plate with CNC-machined threads was clearly the most accurate with screw angulation errors of 2.77° (range 1.05–6.34°). The implanted position of the plates was determined visually; however, the limited surgical exposure and lack of intra-operative fluoroscopy in the laboratory led to high inaccuracies (translational errors of 1.74–13.00 mm). Plate mal-positioning would lead to increased risk of surgical injury due to misplaced screws; hence, it is recommended that technologies that can control plate positioning such as fluoroscopy or alignment guides need to be implemented into customised plate design and implantation workflow. Due to the plate misalignment and the severe nature of some acetabular fractures comprising numerous small bone fragments, the acetabular reduction exceeded the clinical limit of 2 mm for three pelvises. Although our results indicate that customised plates are unsuitable for acetabular fractures comprising six or more fragments, confirmation of this finding with a greater number of specimens is recommended. The times, accuracy and suggested improvements in the current study may be used to guide future workflows aimed at producing customised pelvic fracture plates for greater numbers of patients.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s13018-023-03756-y.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Epidemiology of adult fractures: A review.

          The epidemiology of adult fractures is changing quickly. An analysis of 5953 fractures reviewed in a single orthopaedic trauma unit in 2000 showed that there are eight different fracture distribution curves into which all fractures can be placed. Only two fracture curves involve predominantly young patients; the other six show an increased incidence of fractures in older patients. It is popularly assumed that osteoporotic fractures are mainly seen in the thoracolumbar spine, proximal femur, proximal humerus and distal radius, but analysis of the data indicates that 14 different fractures should now be considered to be potentially osteoporotic. About 30% of fractures in men, 66% of fractures in women and 70% of inpatient fractures are potentially osteoporotic.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found
            Is Open Access

            Additive manufacturing of Ti6Al4V alloy: A review

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Understanding Costs of Care in the Operating Room

              Importance Increasing value requires improving quality or decreasing costs. In surgery, estimates for the cost of 1 minute of operating room (OR) time vary widely. No benchmark exists for the cost of OR time, nor has there been a comprehensive assessment of what contributes to OR cost. Objectives To calculate the cost of 1 minute of OR time, assess cost by setting and facility characteristics, and ascertain the proportion of costs that are direct and indirect. Design, Setting, and Participants This cross-sectional and longitudinal analysis examined annual financial disclosure documents from all comparable short-term general and specialty care hospitals in California from fiscal year (FY) 2005 to FY2014 (N = 3044; FY2014, n = 302). The analysis focused on 2 revenue centers: (1) surgery and recovery and (2) ambulatory surgery. Main Outcomes and Measures Mean cost of 1 minute of OR time, stratified by setting (inpatient vs ambulatory), teaching status, and hospital ownership. The proportion of cost attributable to indirect and direct expenses was identified; direct expenses were further divided into salary, benefits, supplies, and other direct expenses. Results In FY2014, a total of 175 of 302 facilities (57.9%) were not for profit, 78 (25.8%) were for profit, and 49 (16.2%) were government owned. Thirty facilities (9.9%) were teaching hospitals. The mean (SD) cost for 1 minute of OR time across California hospitals was $37.45 ($16.04) in the inpatient setting and $36.14 ($19.53) in the ambulatory setting ( P  = .65). There were no differences in mean expenditures when stratifying by ownership or teaching status except that teaching hospitals had lower mean (SD) expenditures than nonteaching hospitals in the inpatient setting ($29.88 [$9.06] vs $38.29 [$16.43]; P  = .006). Direct expenses accounted for 54.6% of total expenses ($20.40 of $37.37) in the inpatient setting and 59.1% of total expenses ($20.90 of $35.39) in the ambulatory setting. Wages and benefits accounted for approximately two-thirds of direct expenses (inpatient, $14.00 of $20.40; ambulatory, $14.35 of $20.90), with nonbillable supplies accounting for less than 10% of total expenses (inpatient, $2.55 of $37.37; ambulatory, $3.33 of $35.39). From FY2005 to FY2014, expenses in the OR have increased faster than the consumer price index and medical consumer price index. Teaching hospitals had slower growth in costs than nonteaching hospitals. Over time, the proportion of expenses dedicated to indirect costs has increased, while the proportion attributable to salary and supplies has decreased. Conclusions and Relevance The mean cost of OR time is $36 to $37 per minute, using financial data from California’s short-term general and specialty hospitals in FY2014. These statewide data provide a generalizable benchmark for the value of OR time. Furthermore, understanding the composition of costs will allow those interested in value improvement to identify high-yield targets. This cross-sectional analysis of annual financial disclosure documents calculates the cost of 1 minute of operating room time, assesses cost by setting and facility characteristics, and ascertains the proportion of costs that are direct and indirect. Questions What is the cost of 1 minute of operating room time, and what contributes to this cost? Findings In this cross-sectional analysis, the mean cost of operating room time in fiscal year 2014 for California’s acute care hospitals was $36 to $37 per minute; $20 to $21 of this amount is direct cost, with $13 to $14 attributable to wages and benefits and $2.50 to $3.50 attributable to surgical supplies. Meaning These numbers are the first standardized estimates of operating room cost; understanding the composition of costs will allow those interested in value improvement to identify high-yield targets.
                Bookmark

                Author and article information

                Contributors
                pvlee@unimelb.edu.au
                Journal
                J Orthop Surg Res
                J Orthop Surg Res
                Journal of Orthopaedic Surgery and Research
                BioMed Central (London )
                1749-799X
                16 May 2023
                16 May 2023
                2023
                : 18
                : 360
                Affiliations
                [1 ]GRID grid.1008.9, ISNI 0000 0001 2179 088X, Department of Biomedical Engineering, , University of Melbourne, ; Melbourne, Australia
                [2 ]GRID grid.1008.9, ISNI 0000 0001 2179 088X, Department of Surgery, , University of Melbourne, ; Melbourne, Australia
                [3 ]GRID grid.416153.4, ISNI 0000 0004 0624 1200, Department of Orthopaedic Surgery, , Royal Melbourne Hospital, ; Parkville, Australia
                [4 ]DePuy Synthes Companies, Warsaw, USA
                Article
                3756
                10.1186/s13018-023-03756-y
                10189937
                37194079
                7d85a96e-e816-49eb-9179-0ccb2e032cba
                © The Author(s) 2023

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 10 February 2023
                : 25 March 2023
                Categories
                Research Article
                Custom metadata
                © BioMed Central Ltd., part of Springer Nature 2023

                Surgery
                pelvis,fractures,3d-printing,additive manufacturing,screw angulation
                Surgery
                pelvis, fractures, 3d-printing, additive manufacturing, screw angulation

                Comments

                Comment on this article