14
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Charged PVDF multilayer nanofiber filter in filtering simulated airborne novel coronavirus (COVID-19) using ambient nano-aerosols

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Highlights

          • Filtration of COVID-19 + airborne carrier, simulated by ambient aerosols 100 nm.

          • Ambient aerosol - Irregular shape, aerosol interactions, different properties.

          • Added electrostatic efficiency 100% – 180%X mechanical efficiency for aerosol >80 nm.

          • 6-layer stack-up charged nanofibers 525 nm fiber diameter, max electrostatic capture, reduce △p.

          • 50, 100, 300 nm. Ambient aerosol:88%, 88% 96%; NaCl aerosol:92%, 94%, 98%(N98) efficiency.

          • △P 2.65 mm water, 1/10 ≪ N95 respirator 25–35 mm water≪ N98, Quality Factor = 0.1 – 0.13/Pa.

          Abstract

          The novel coronavirus (COVID-19), average size 100 nm, can be aerosolized by cough, sneeze, speech and breath of infected persons. The airborne carrier for the COVID-19 can be tiny droplets and particulates from infected person, fine suspended mists (humidity) in air, or ambient aerosols in air. To-date, unfortunately there are no test standards for nano-aerosols (≤100 nm). A goal in our study is to develop air filters (e.g. respirator, facemask, ventilator, medical breathing filter/system) with 90% capture on 100-nm airborne COVID-19 with pressure drop of less than 30 Pa (3.1 mm water). There are two challenges. First, this airborne bio-nanoaerosol (combined virus and carrier) is amorphous unlike cubic NaCl crystals. Second, unlike standard laboratory tests on NaCl and test oil (DOP) droplets, these polydispersed aerosols all challenge the filter simultaneously and they are of different sizes and can interact among themselves complicating the filtration process. For the first time, we have studied these two effects using ambient aerosols (simulating the bio-nanoaerosols of coronavirus plus carrier of different shapes and sizes) to challenge electrostatically charged multilayer/multimodule nanofiber filters. This problem is fundamentally complicated due to mechanical and electrostatic interactions among aerosols of different sizes with induced charges of different magnitudes.

          The test filters were arranged in 2, 4, and 6 multiple-modules stack-up with each module having 0.765 g/m 2 of charged PVDF nanofibers (mean diameter 525 ± 191 nm). This configuration minimized electrical interference among neighboring charged nanofibers and reduced flow resistance in the filter. For ambient aerosol size>80 nm (applicable to the smallest COVID-19), the electrostatic effect contributes 100–180% more efficiency to the existing mechanical efficiency (due to diffusion and interception) depending on the number of modules in the filter. By stacking-up modules to increase fiber basis weight in the filter, a 6-layer charged nanofiber filter achieved 88%, 88% and 96% filtration efficiency for, respectively, 55-nm, 100-nm and 300-nm ambient aerosol. This is very close to attaining our set goal of 90%-efficiency on the 100-nm ambient aerosol. The pressure drop for the 6-layer nanofiber filter was only 26 Pa (2.65 mm water column) which was below our limit of 30 Pa (3.1 mm water). For the test multi-module filters, a high ‘quality factor’ (efficiency-to-pressure-drop ratio) of about 0.1 to 0.13 Pa −1 can be consistently maintained, which was far better than conventional filters.

          Using the same PVDF 6-layer charged nanofiber filter, laboratory tests results using monodispersed NaCl aerosols of 50, 100, and 300 nm yielded filtration efficiency, respectively, 92%, 94% and 98% (qualified for 'N98 standard') with same pressure drop of 26 Pa. The 2–6% discrepancy in efficiency for the NaCl aerosols was primarily attributed to the absence of interaction among aerosols of different sizes using monodispersed NaCl aerosols in the laboratory. This discrepancy can be further reduced with increasing number of modules in the filter and for larger 300-nm aerosol. The 6-layer charged nanofiber filter was qualified as a 'N98 respirator' (98% capture efficiency for 300-nm NaCl aerosols) but with pressure drop of only 2.65-mm water which was 1/10 below conventional N95 with 25-mm (exhaling) to 35-mm (inhaling) water column! The 6-layer charged PVDF nanofiber filter provides good personal protection against airborne COVID-19 virus and nano-aerosols from pollution based on the N98 standard, yet it is at least 10X more breathable than a conventional N95 respirator.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          A Novel Coronavirus from Patients with Pneumonia in China, 2019

          Summary In December 2019, a cluster of patients with pneumonia of unknown cause was linked to a seafood wholesale market in Wuhan, China. A previously unknown betacoronavirus was discovered through the use of unbiased sequencing in samples from patients with pneumonia. Human airway epithelial cells were used to isolate a novel coronavirus, named 2019-nCoV, which formed a clade within the subgenus sarbecovirus, Orthocoronavirinae subfamily. Different from both MERS-CoV and SARS-CoV, 2019-nCoV is the seventh member of the family of coronaviruses that infect humans. Enhanced surveillance and further investigation are ongoing. (Funded by the National Key Research and Development Program of China and the National Major Project for Control and Prevention of Infectious Disease in China.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Influenza virus pleiomorphy characterized by cryoelectron tomography.

            Influenza virus remains a global health threat, with millions of infections annually and the impending threat that a strain of avian influenza may develop into a human pandemic. Despite its importance as a pathogen, little is known about the virus structure, in part because of its intrinsic structural variability (pleiomorphy): the primary distinction is between spherical and elongated particles, but both vary in size. Pleiomorphy has thwarted structural analysis by image reconstruction of electron micrographs based on averaging many identical particles. In this study, we used cryoelectron tomography to visualize the 3D structures of 110 individual virions of the X-31 (H3N2) strain of influenza A. The tomograms distinguish two kinds of glycoprotein spikes [hemagglutinin (HA) and neuraminidase (NA)] in the viral envelope, resolve the matrix protein layer lining the envelope, and depict internal configurations of ribonucleoprotein (RNP) complexes. They also reveal the stems that link the glycoprotein ectodomains to the membrane and interactions among the glycoproteins, the matrix, and the RNPs that presumably control the budding of nascent virions from host cells. Five classes of virions, four spherical and one elongated, are distinguished by features of their matrix layer and RNP organization. Some virions have substantial gaps in their matrix layer ("molecular fontanels"), and others appear to lack a matrix layer entirely, suggesting the existence of an alternative budding pathway in which matrix protein is minimally involved.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Development of high efficiency nanofilters made of nanofibers

                Bookmark

                Author and article information

                Contributors
                Journal
                Sep Purif Technol
                Sep Purif Technol
                Separation and Purification Technology
                Elsevier B.V.
                1383-5866
                1873-3794
                22 April 2020
                15 August 2020
                22 April 2020
                : 245
                : 116887
                Affiliations
                Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
                Author notes
                [* ]Corresponding author. wallacewfleung@ 123456gmail.com
                Article
                S1383-5866(20)31361-7 116887
                10.1016/j.seppur.2020.116887
                7194611
                32372877
                7dc050b1-c620-43a9-b3f1-915f3e717491
                © 2020 Elsevier B.V. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 26 February 2020
                : 6 April 2020
                : 7 April 2020
                Categories
                Article

                novel coronavirus,covid-19,nano-aerosol,electrostatically charged pvdf nanofiber filter,multimodule/multilayer,facemask/respirator

                Comments

                Comment on this article