3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      An intramembrane chaperone complex facilitates membrane protein biogenesis

      ,
      Nature
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Hsp70 chaperones: Cellular functions and molecular mechanism

          Abstract. Hsp70 proteins are central components of the cellular network of molecular chaperones and folding catalysts. They assist a large variety of protein folding processes in the cell by transient association of their substrate binding domain with short hydrophobic peptide segments within their substrate proteins. The substrate binding and release cycle is driven by the switching of Hsp70 between the low-affinity ATP bound state and the high-affinity ADP bound state. Thus, ATP binding and hydrolysis are essential in vitro and in vivo for the chaperone activity of Hsp70 proteins. This ATPase cycle is controlled by co-chaperones of the family of J-domain proteins, which target Hsp70s to their substrates, and by nucleotide exchange factors, which determine the lifetime of the Hsp70-substrate complex. Additional co-chaperones fine-tune this chaperone cycle. For specific tasks the Hsp70 cycle is coupled to the action of other chaperones, such as Hsp90 and Hsp100.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane.

            We have reproduced the process of protein transport across and of protein integration into the mammalian endoplasmic reticulum membrane by the use of proteoliposomes reconstituted from pure phospholipids and purified membrane proteins. The transport of some proteins requires only two membrane protein complexes: the signal recognition particle receptor, needed for targeting of a nascent chain to the membrane, and a novel complex, the Sec61p complex, that consists of Sec61p and two smaller polypeptides. The translocation of other proteins also needs the presence of the translocating chain-association membrane (TRAM) protein. The integration of two membrane proteins of different topologies into the membrane does not require additional components. These results indicate a surprising simplicity of the basic translocation machinery. They suggest that the Sec61p complex binds the ribosome during translocation and forms the postulated protein-conducting channel.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The ER membrane protein complex is a transmembrane domain insertase

              Insertion of proteins into membranes is an essential cellular process. The extensive biophysical and topological diversity of membrane proteins necessitates multiple insertion pathways that remain incompletely defined. Here we found that known membrane insertion pathways fail to effectively engage tail-anchored membrane proteins with moderately hydrophobic transmembrane domains. These proteins are instead shielded in the cytosol by calmodulin. Dynamic release from calmodulin allowed sampling of the endoplasmic reticulum (ER), where the conserved ER membrane protein complex (EMC) was shown to be essential for efficient insertion in vitro and in cells. Purified EMC in synthetic liposomes catalyzed the insertion of its substrates in a reconstituted system. Thus, EMC is a transmembrane domain insertase, a function that may explain its widely pleiotropic membrane-associated phenotypes across organisms.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Nature
                Nature
                Springer Science and Business Media LLC
                0028-0836
                1476-4687
                August 19 2020
                Article
                10.1038/s41586-020-2624-y
                32814900
                7dc7bfe6-ee01-4b36-b44c-2aed3212a437
                © 2020

                http://www.springer.com/tdm

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article