1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Potencial energético de clones de Paulownia y Miscanthus para la producción de energía en Chile Translated title: Energy potential of Paulownia and Miscanthus clones for energy production in Chile

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Resumen El modelo energético mundial se basa en combustibles fósiles, el cual ha venido siendo sustituido por consideraciones ambientales y económicas, dándole paso a la biomasa y a las plantaciones dendroenegéticas. En Chile, las energías renovables no convencionales (ERNC) vienen ganando espacio, además la nación ha abocado esfuerzos en especies que posean buen potencial energético. Así, este estudio tiene como objetivo evaluar el potencial físico-químico, energético y perfiles térmicos de dos especies (Paulownia elongata x fortunei y Miscanthus x giganteus) para el uso energético en tres sitios contrastantes de Chile. Los análisis fueron realizados en su mayoría bajo los estándares de las Normas DIN. Los resultados para Paulownia mostraron diferencias entre los sitios, obteniendo los mejores resultados en el sitio El Vergel con un porcentaje de lignina de 34,84%, cenizas de 1,16%, material volátil de 81,70%, carbono de 47,02% y una densidad energética líquida (DEL) de 2,16 GJ m-3. Para Miscanthus los mejores resultados también fueron registrados en El Vergel, con porcentaje de lignina de 30,60%, cenizas de 2,84%, material volátil de 82,26% y carbono de 45,97% y una DEL de 1,67 GJ m-3, destacando que los mejores resultados de El Vergel son para la densidad D1. Respecto al perfil térmico (TGA-DTG), la Paulownia presentó pérdida de masa mayor que el Miscanthus y tuvo ignición a menor temperatura de 197,76 °C y 209,66 °C respectivamente. Por lo tanto, el mayor porcentaje de residuo lo presentó el Miscanthus con 5,63%. Consiguientemente, ambas especies presentan características deseables para su uso energético.

          Translated abstract

          Abstract The global energy model is based on fossil fuels, which has been replaced by environmental and economic considerations, giving way to biomass and dendroenegetic plantations. In Chile, non-conventional renewable energies (NCRE) have been gaining space, and the nation has focused efforts on species with good energy potential. Thus, this study aims to evaluate the physical-chemical potential, energy and thermal profiles of two species (Paulownia elongata x fortunei and Miscanthus x giganteus) for energy use in three contrasting sites of Chile. The analyses were mostly performed under DIN Standards. The results for Paulownia showed differences between the sites, obtaining the best results in the Vergel site with a percentage of lignin of 34,84%, ashes of 1,16%, volatile material of 81.70%, carbon of 47.02% and a liquid energy density (EL) of 2.16 GJ m-3. For Miscanthus, the best results were also recorded in the Vergel, with a percentage of lignin of 30.60%, ashes of 2.84%, volatile material of 82.26% and carbon of 45.97% and a DEL of 1, 67 GJ m-3, highlighting that the best results of the Vergel site are for density D1. With respect to the thermal profile (TGA-DTG), Paulownia presented mass loss greater than Miscanthus and had ignition at a lower temperature of 197.76 °C and 209.66 °C respectively. Therefore, the highest percentage of waste was presented by Miscanthus with 5.63%. Accordingly, both species have desirable characteristics for their energetic use.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Energy production from biomass (Part 1): Overview of biomass.

          The use of renewable energy sources is becoming increasingly necessary, if we are to achieve the changes required to address the impacts of global warming. Biomass is the most common form of renewable energy, widely used in the third world but until recently, less so in the Western world. Latterly much attention has been focused on identifying suitable biomass species, which can provide high-energy outputs, to replace conventional fossil fuel energy sources. The type of biomass required is largely determined by the energy conversion process and the form in which the energy is required. In the first of three papers, the background to biomass production (in a European climate) and plant properties is examined. In the second paper, energy conversion technologies are reviewed, with emphasis on the production of a gaseous fuel to supplement the gas derived from the landfilling of organic wastes (landfill gas) and used in gas engines to generate electricity. The potential of a restored landfill site to act as a biomass source, providing fuel to supplement landfill gas-fuelled power stations, is examined, together with a comparison of the economics of power production from purpose-grown biomass versus waste-biomass. The third paper considers particular gasification technologies and their potential for biomass gasification.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Native Cellulose: Structure, Characterization and Thermal Properties

            In this work, the relationship between cellulose crystallinity, the influence of extractive content on lignocellulosic fiber degradation, the correlation between chemical composition and the physical properties of ten types of natural fibers were investigated by FTIR spectroscopy, X-ray diffraction and thermogravimetry techniques. The results showed that higher extractive contents associated with lower crystallinity and lower cellulose crystallite size can accelerate the degradation process and reduce the thermal stability of the lignocellulosic fibers studied. On the other hand, the thermal decomposition of natural fibers is shifted to higher temperatures with increasing the cellulose crystallinity and crystallite size. These results indicated that the cellulose crystallite size affects the thermal degradation temperature of natural fibers. This study showed that through the methods used, previous information about the structure and properties of lignocellulosic fibers can be obtained before use in composite formulations.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Chemical properties of solid biofuels—significance and impact

                Bookmark

                Author and article information

                Journal
                mb
                Madera y bosques
                Madera bosques
                Instituto de Ecología A.C. (Xalapa, Veracruz, Mexico )
                1405-0471
                2448-7597
                2020
                : 26
                : 1
                : e2611916
                Affiliations
                [2] Concepción Bío-Bío orgnameUniversidad de Concepción orgdiv1Centro de Biotecnología Chile
                [3] Concepción Bío-Bío orgnameUniversidad de Concepción orgdiv1Unidad de Desarrollo Tecnológico Chile
                [1] Concepción Bío-Bío orgnameUniversidad de Concepción orgdiv1Facultad de Ciencias Forestales Chile
                [4] Irlanda del Norte orgnameAgri-Food and Biosciences Institute Reino Unido
                Article
                S1405-04712020000100218 S1405-0471(20)02600100218
                10.21829/myb.2020.2611916
                7e3fc673-cd4a-4a65-ab0e-d9afdc57bbcd

                This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

                History
                : 21 December 2018
                : 25 July 2019
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 58, Pages: 0
                Product

                SciELO Mexico

                Categories
                Artículos científicos

                biomasa alternativa,energía renovable,ignición,TGA,thermal analysis,ignition,bioenergy,alternative biomass,renewable energy,análisis térmico,bioenergía

                Comments

                Comment on this article