7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The CLV-WUS Stem Cell Signaling Pathway: A Roadmap to Crop Yield Optimization

      review-article
      1 , 2
      Plants
      MDPI
      CLE, CLV, WUS, stem cells, meristem, SAM, signaling, locule

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The shoot apical meristem at the growing shoot tip acts a stem cell reservoir that provides cells to generate the entire above-ground architecture of higher plants. Many agronomic plant yield traits such as tiller number, flower number, fruit number, and kernel row number are therefore defined by the activity of the shoot apical meristem and its derivatives, the floral meristems. Studies in the model plant Arabidopsis thaliana demonstrated that a molecular negative feedback loop called the CLAVATA (CLV)-WUSCHEL (WUS) pathway regulates stem cell maintenance in shoot and floral meristems. CLV-WUS pathway components are associated with quantitative trait loci (QTL) for yield traits in crop plants such as oilseed, tomato, rice, and maize, and may have played a role in crop domestication. The conservation of these pathway components across the plant kingdom provides an opportunity to use cutting edge techniques such as genome editing to enhance yield traits in a wide variety of agricultural plant species.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes.

          The higher-plant shoot meristem is a dynamic structure whose maintenance depends on the coordination of two antagonistic processes, organ initiation and self-renewal of the stem cell population. In Arabidopsis shoot and floral meristems, the WUSCHEL (WUS) gene is required for stem cell identity, whereas the CLAVATA1, 2, and 3 (CLV) genes promote organ initiation. Our analysis of the interactions between these key regulators indicates that (1) the CLV genes repress WUS at the transcript level and that (2) WUS expression is sufficient to induce meristem cell identity and the expression of the stem cell marker CLV3. Our data suggest that the shoot meristem has properties of a self-regulatory system in which WUS/CLV interactions establish a feedback loop between the stem cells and the underlying organizing center.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis.

            The shoot apical meristem is responsible for above-ground organ initiation in higher plants, accomplishing continuous organogenesis by maintaining a pool of undifferentiated cells and directing descendant cells toward organ formation. Normally, proliferation and differentiation are balanced, so that the structure and size of the shoot meristem is maintained. However, Arabidopsis plants homozygous for mutations at the CLAVATA1 (CLV1) locus accumulate excess undifferentiated cells. We describe the molecular cloning and expression pattern of the CLV1 gene. It encodes a putative receptor kinase, suggesting a role in signal transduction. The extracellular domain is composed of 21 tandem leucine-rich repeats that resemble leucine-rich repeats found in animal hormone receptors. We provide evidence that CLV1 expression in the inflorescence is specifically associated with meristematic activity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis.

              Self perpetuation of the shoot meristem is essential for the repetitive initiation of shoot structures during plant development. In Arabidopsis shoot meristem maintenance is disrupted by recessive mutations in the WUSCHEL (WUS) gene. The defect is evident at all developmental stages and is restricted to shoot and floral meristems, whereas the root meristem is not affected. wus mutants fail to properly organize a shoot meristem in the embryo. Postembryonically, defective shoot meristems are initiated repetitively but terminate prematurely in aberrant flat structures. In contrast to wild-type shoot meristems, primordia initiation occurs ectopically across mutant apices, including the center, and often new shoot meristems instead of organs are initiated. The cells of wus shoot apices are larger and more vacuolated than wild-type shoot meristem cells. wus floral meristems terminate prematurely in a central stamen. Double mutant studies indicate that the number of organ primordia in the center of wus flowers is limited, irrespective of organ identity and we propose that meristem cells are allocated into floral whorl domains in a sequential manner. WUS activity also appears to be required for the formation of supernumerary organs in the center of agamous, superman or clavata1 flowers, suggesting that the WUS gene acts upstream of the corresponding genes. Our results suggest that the WUS gene is specifically required for central meristem identity of shoot and floral meristems to maintain their structural and functional integrity.
                Bookmark

                Author and article information

                Journal
                Plants (Basel)
                Plants (Basel)
                plants
                Plants
                MDPI
                2223-7747
                19 October 2018
                December 2018
                : 7
                : 4
                : 87
                Affiliations
                [1 ]Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service, Albany, CA 94710, USA; jfletcher@ 123456berkeley.edu ; Tel.: +1-510-559-5917; Fax: +1-510-559-5678
                [2 ]Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
                Author information
                https://orcid.org/0000-0003-1834-6213
                Article
                plants-07-00087
                10.3390/plants7040087
                6313860
                30347700
                7e4dbfd6-d1f4-4882-a5d6-65306ab9b261
                © 2018 by the author.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 12 September 2018
                : 10 October 2018
                Categories
                Review

                cle,clv,wus,stem cells,meristem,sam,signaling,locule
                cle, clv, wus, stem cells, meristem, sam, signaling, locule

                Comments

                Comment on this article