23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Improved cell metabolism prolongs photoreceptor survival upon retinal-pigmented epithelium loss in the sodium iodate induced model of geographic atrophy

      research-article
      1 , 1
      Oncotarget
      Impact Journals LLC
      AMD, cone degeneration, rod degeneration, geographic atrophy, mTORC1, Gerotarget

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Age-related macular degeneration (AMD) is characterized by malfunction and loss of retinal-pigmented epithelium (RPE) cells. Because the RPE transfers nutrients from the choriocapillaris to photoreceptor (PR), PRs are affected as well. Geographic atrophy (GA) is an advanced form of AMD characterized by severe vision impairment due to RPE loss over large areas. Currently there is no treatment to delay the degeneration of nutrient deprived PRs once RPE cells die. Here we show that cell-autonomous activation of the key regulator of cell metabolism, the kinase mammalian target of rapamycin complex 1 (mTORC1), delays PR death in the sodium iodate induced model of RPE atrophy. Consistent with this finding loss of mTORC1 in cones accelerates cone death as cones fail to balance demand with supply. Interestingly, promoting rod survival does not promote cone survival in this model of RPE atrophy as both, rods and cones suffer from a sick and dying RPE. The findings suggest that activation of metabolic genes downstream of mTORC1 can serve as a strategy to prolong PR survival when RPE cells malfunction or die.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Prevalence of age-related macular degeneration in the United States.

          To estimate the prevalence and distribution of age-related macular degeneration (AMD) in the United States by age, race/ethnicity, and gender. Summary prevalence estimates of drusen 125 microm or larger, neovascular AMD, and geographic atrophy were prepared separately for black and white persons in 5-year age intervals starting at 40 years. The estimated rates were based on a meta-analysis of recent population-based studies in the United States, Australia, and Europe. These rates were applied to 2000 US Census data and to projected US population figures for 2020 to estimate the number of the US population with drusen and AMD. The overall prevalence of neovascular AMD and/or geographic atrophy in the US population 40 years and older is estimated to be 1.47% (95% confidence interval, 1.38%-1.55%), with 1.75 million citizens having AMD. The prevalence of AMD increased dramatically with age, with more than 15% of the white women older than 80 years having neovascular AMD and/or geographic atrophy. More than 7 million individuals had drusen measuring 125 microm or larger and were, therefore, at substantial risk of developing AMD. Owing to the rapidly aging population, the number of persons having AMD will increase by 50% to 2.95 million in 2020. Age-related macular degeneration was far more prevalent among white than among black persons. Age-related macular degeneration affects more than 1.75 million individuals in the United States. Owing to the rapid aging of the US population, this number will increase to almost 3 million by 2020.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies

            The Lancet, 385(9967), 509-516
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Rd8 mutation of the Crb1 gene is present in vendor lines of C57BL/6N mice and embryonic stem cells, and confounds ocular induced mutant phenotypes.

              We noted an unexpected inheritance pattern of lesions in several strains of gene-manipulated mice with ocular phenotypes. The lesions, which appeared at various stages of backcross to C57BL/6, bore resemblance to the rd8 retinal degeneration phenotype. We set out to examine the prevalence of this mutation in induced mutant mouse lines, vendor C57BL/6 mice and in widely used embryonic stem cells. Ocular lesions were evaluated by fundus examination and histopathology. Detection of the rd8 mutation at the genetic level was performed by PCR with appropriate primers. Data were confirmed by DNA sequencing in selected cases. Analysis of several induced mutant mouse lines with ocular disease phenotypes revealed that the disease was associated 100% with the presence of the rd8 mutation in the Crb1 gene rather than with the gene of interest. DNA analysis of C57BL/6 mice from common commercial vendors demonstrated the presence of the rd8 mutation in homozygous form in all C57BL/6N substrains, but not in the C57BL/6J substrain. A series of commercially available embryonic stem cells of C57BL/6N origin and C57BL/6N mouse lines used to generate ES cells also contained the rd8 mutation. Affected mice displayed ocular lesions typical of rd8, which were detectable by funduscopy and histopathology as early as 6 weeks of age. These findings identify the presence of the rd8 mutation in the C57BL/6N mouse substrain used widely to produce transgenic and knockout mice. The results have grave implications for the vision research community who develop mouse lines to study eye disease, as presence of rd8 can produce significant disease phenotypes unrelated to the gene or genes of interest. It is suggested that researchers screen for rd8 if their mouse lines were generated on the C57BL/6N background, bear resemblance to the rd8 phenotype, or are of indeterminate origin.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                1 March 2016
                11 February 2016
                : 7
                : 9
                : 9620-9633
                Affiliations
                1 Department of Ophthalmology and Gene Therapy Center, University of Massachusetts Medical School, Worcester MA, USA
                Author notes
                Correspondence to: Claudio Punzo, Claudio.Punzo@ 123456umassmed.edu
                Article
                7330
                10.18632/oncotarget.7330
                4891071
                26883199
                7e7456c1-8039-433a-8f83-d6ce24ef38a6
                Copyright: © 2016 Zieger and Punzo

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 18 September 2015
                : 23 January 2016
                Categories
                Research Paper: Gerotarget (Focus on Aging)

                Oncology & Radiotherapy
                amd,cone degeneration,rod degeneration,geographic atrophy,mtorc1,gerotarget
                Oncology & Radiotherapy
                amd, cone degeneration, rod degeneration, geographic atrophy, mtorc1, gerotarget

                Comments

                Comment on this article