9
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Can guava monocultures (Psidium guajava L.) function as refuge for bird conservation?

      , , , ,
      Neotropical Biology and Conservation
      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Agricultural intensification negatively affects bird communities, and the response of birds to these changes varies from those that survive and increase their populations (disturb-tolerant species) to those that cannot adapt to new conditions and are regionally extinct (disturb-sensitive species). Thus, the present study sought to investigate the bird community in 39 guava orchards in the semiarid region of the state of Sergipe, northeast Brazil. Field observations were made between July and October 2017, through a one-hour visit to each orchard. Samplings were conducted using the MacKinnon’s List method. In addition to bird sampling, walks were carried out in the orchards to observe nesting. Seventy-six species of birds belonging to 30 families were recorded using the guava orchards. The most frequent species were Vanellus chilensis, Columbina talpacoti, Columbina picui, Crotophaga ani, Pitangus sulphuratus and Sporophila albogularis. Of the 186 nests recorded in the orchards, the majority (n = 144 nests; 77.4%) belonged to Columbina picui, Columbina talpacoti and Columbina minuta. The results demonstrate that the bird community in the guava orchards is formed only by disturb-tolerant species, showing that the studied guava orchards are not favorable to the conservation of disturb-sensitive birds of the Caatinga domain.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Global consequences of land use.

          Land use has generally been considered a local environmental issue, but it is becoming a force of global importance. Worldwide changes to forests, farmlands, waterways, and air are being driven by the need to provide food, fiber, water, and shelter to more than six billion people. Global croplands, pastures, plantations, and urban areas have expanded in recent decades, accompanied by large increases in energy, water, and fertilizer consumption, along with considerable losses of biodiversity. Such changes in land use have enabled humans to appropriate an increasing share of the planet's resources, but they also potentially undermine the capacity of ecosystems to sustain food production, maintain freshwater and forest resources, regulate climate and air quality, and ameliorate infectious diseases. We face the challenge of managing trade-offs between immediate human needs and maintaining the capacity of the biosphere to provide goods and services in the long term.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Solutions for a cultivated planet.

            Increasing population and consumption are placing unprecedented demands on agriculture and natural resources. Today, approximately a billion people are chronically malnourished while our agricultural systems are concurrently degrading land, water, biodiversity and climate on a global scale. To meet the world's future food security and sustainability needs, food production must grow substantially while, at the same time, agriculture's environmental footprint must shrink dramatically. Here we analyse solutions to this dilemma, showing that tremendous progress could be made by halting agricultural expansion, closing 'yield gaps' on underperforming lands, increasing cropping efficiency, shifting diets and reducing waste. Together, these strategies could double food production while greatly reducing the environmental impacts of agriculture.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Proximate Causes and Underlying Driving Forces of Tropical Deforestation

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Neotropical Biology and Conservation
                NBC
                Pensoft Publishers
                2236-3777
                November 10 2021
                November 10 2021
                : 16
                : 4
                : 475-491
                Article
                10.3897/neotropical.16.e70296
                7eb96771-c520-4eff-b011-c04a7a1cd0eb
                © 2021

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article