Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Oestrogen receptor alpha in pulmonary hypertension

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aims

          Pulmonary arterial hypertension (PAH) occurs more frequently in women with mutations in bone morphogenetic protein receptor type 2 (BMPR2) and dysfunctional BMPR2 signalling underpinning heritable PAH. We have previously shown that serotonin can uncover a pulmonary hypertensive phenotype in BMPR2 +/− mice and that oestrogen can increase serotinergic signalling in human pulmonary arterial smooth muscle cells (hPASMCs). Hence, here we wished to characterize the expression of oestrogen receptors (ERs) in male and female human pulmonary arteries and have examined the influence of oestrogen and serotonin on BMPR2 and ERα expression.

          Methods and results

          By immunohistochemistry, we showed that ERα, ERβ, and G-protein-coupled receptors are expressed in human pulmonary arteries localizing mainly to the smooth muscle layer which also expresses the serotonin transporter (SERT). Protein expression of ERα protein was higher in female PAH patient hPASMCs compared with male and serotonin also increased the expression of ERα. 17β-estradiol induced proliferation of hPASMCs via ERα activation and this engaged mitogen-activated protein kinase and Akt signalling. Female mice over-expressing SERT (SERT + mice) develop PH and the ERα antagonist MPP attenuated the development of PH in normoxic and hypoxic female SERT + mice. The therapeutic effects of MPP were accompanied by increased expression of BMPR2 in mouse lung.

          Conclusion

          ERα is highly expressed in female hPASMCs from PAH patients and mediates oestrogen-induced proliferation of hPASMCs via mitogen-activated protein kinase and Akt signalling. Serotonin can increase ERα expression in hPASMCs and antagonism of ERα reverses serotonin-dependent PH in the mouse and increases BMPR2 expression.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Predicting survival in pulmonary arterial hypertension: insights from the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL).

          Factors that determine survival in pulmonary arterial hypertension (PAH) drive clinical management. A quantitative survival prediction tool has not been established for research or clinical use. Data from 2716 patients with PAH enrolled consecutively in the US Registry to Evaluate Early and Long-Term PAH Disease Management (REVEAL) were analyzed to assess predictors of 1-year survival. We identified independent prognosticators of survival and derived a multivariable, weighted risk formula for clinical use. One-year survival from the date of enrollment was 91.0% (95% confidence interval [CI], 89.9 to 92.1). In a multivariable analysis with Cox proportional hazards, variables independently associated with increased mortality included pulmonary vascular resistance >32 Wood units (hazard ratio [HR], 4.1; 95% CI, 2.0 to 8.3), PAH associated with portal hypertension (HR, 3.6; 95% CI, 2.4 to 5.4), modified New York Heart Association/World Health Organization functional class IV (HR, 3.1; 95% CI, 2.2 to 4.4), men >60 years of age (HR, 2.2; 95% CI, 1.6 to 3.0), and family history of PAH (HR, 2.2; 95% CI, 1.2 to 4.0). Renal insufficiency, PAH associated with connective tissue disease, functional class III, mean right atrial pressure, resting systolic blood pressure and heart rate, 6-minute walk distance, brain natriuretic peptide, percent predicted carbon monoxide diffusing capacity, and pericardial effusion on echocardiogram all predicted mortality. Based on these multivariable analyses, a prognostic equation was derived and validated by bootstrapping technique. We identified key predictors of survival based on the patient's most recent evaluation and formulated a contemporary prognostic equation. Use of this tool may allow the individualization and optimization of therapeutic strategies. Serial follow-up and reassessment are warranted. Clinical Trial Registration- URL: http://www.clinicaltrials.gov. Unique identifier: NCT00370214.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular and cellular basis of cardiovascular gender differences.

            Cardiovascular diseases (CVDs), the major cause of morbidity and mortality for both men and women, occur uncommonly in premenopausal women, but their incidence rises sharply after the menopausal transition. Cardiovascular gender differences are apparent long before CVDs appear in men and women, and improved understanding of the biology underlying these differences has the potential to advance the diagnosis and treatment of CVDs in both sexes. This review considers gender differences in the molecular and cellular physiology of the heart and blood vessels in health and disease, highlighting understudied areas that can help resolve the current controversy regarding hormone replacement therapy and improve cardiovascular health in women.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pulmonary arterial hypertension: epidemiology and registries.

              Registries of patients with pulmonary arterial hypertension (PAH) have been instrumental in characterizing the presentation and natural history of the disease and provide a basis for prognostication. Since the initial accumulation of data conducted in the 1980s, subsequent registry databases have yielded information about the demographic factors, treatment, and survival of patients and have permitted comparisons between populations in different eras and environments. Inclusion of patients with all subtypes of PAH has also allowed comparisons of these subpopulations. We describe herein the basic methodology by which PAH registries have been conducted, review key insights provided by registries, summarize issues related to interpretation and comparison of the results, and discuss the utility of data to predict survival outcomes. Potential sources of bias, particularly related to the inclusion of incident and/or prevalent patients and missing data, are addressed. A fundamental observation of current registries is that survival in the modern treatment era has improved compared with that observed previously and that outcomes among PAH subpopulations vary substantially. Continuing systematic clinical surveillance of PAH will be important as treatment evolves and as understanding of mechanisms advance. Considerations for future directions of registry studies include enrollment of a broader population of patients with pulmonary hypertension of all clinical types and severity and continued globalization and collaboration of registry databases. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Cardiovasc Res
                Cardiovasc. Res
                cardiovascres
                cardiovascres
                Cardiovascular Research
                Oxford University Press
                0008-6363
                1755-3245
                01 May 2015
                12 March 2015
                12 March 2015
                : 106
                : 2
                : 206-216
                Affiliations
                [1 ]College of Medical, Veterinary, and Life Sciences, Research Institute of Cardiovascular and Medical Sciences, University of Glasgow , Room 448, West Medical Building/Wolfson Link Building, Glasgow G12 8QQ, UK
                [2 ]School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA
                Author notes
                [* ]Corresponding author. Tel: + 44 141 330 4768; Fax: +44 141 330 5481, Email: mandy.maclean@ 123456glasgow.ac.uk
                [†]

                Joint First Authorship.

                Article
                cvv106
                10.1093/cvr/cvv106
                4615797
                25765937
                7ec09951-a51c-4201-9545-feea776bf227
                © The Author 2015. Published by Oxford University Press on behalf of the European Society of Cardiology.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 27 October 2014
                : 19 February 2015
                : 27 February 2015
                Categories
                Original Articles
                Integrative Physiology and Pathophysiology
                Custom metadata
                Time for primary review: 37 days

                Cardiovascular Medicine
                pulmonary hypertension,oestrogen,oestrogen receptor alpha,serotonin,bmpr2
                Cardiovascular Medicine
                pulmonary hypertension, oestrogen, oestrogen receptor alpha, serotonin, bmpr2

                Comments

                Comment on this article