Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Copy Number Variations in a Cohort of 420 Individuals with Neurodevelopmental Disorders From the South of Brazil

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chromosomal microarray (CMA) is now recommended as first tier for the evaluation in individuals with unexplained neurodevelopmental disorders (ND). However, in developing countries such as Brazil, classical cytogenetic tests are still the most used in clinical practice, as reflected by the scarcity of publications of microarray investigation in larger cohorts. This is a retrospective study which analyses the reading files of CMA and available clinical data from 420 patients from the south of Brazil, mostly children, with neurodevelopmental disorders requested by medical geneticists and neurologists for diagnostic purpose. Previous karyotyping was reported for 138 and includes 17 with abnormal results. The platforms used for CMA were CYTOSCAN 750K (75%) and CYTOSCAN HD (25%). The sex ratio of the patients was 1.625 males :1 female and the mean age was 9.5 years. A total of 96 pathogenic copy number variations (CNVs), 58 deletions and 38 duplications, were found in 18% of the patients and in all chromosomes, except chromosome 11. For 12% of the patients only variants of uncertain clinical significance were found. No clinically relevant CNV was found in 70%. The main referrals for chromosomal microarrays (CMA) were developmental delay (DD), intellectual disability (ID), facial dysmorphism and autism spectrum disorder (ASD). DD/ID were present in 80%, facial dysmorphism in 52% and ASD in 32%. Some phenotypes in this population could be predictive of a higher probability to carry a pathogenic CNV, as follows: dysmorphic facial features ( p-value = < 0.0001, OR = 0.32), obesity ( p-value = 0.006, OR = 0.20), short stature ( p-value = 0.032, OR = 0.44), genitourinary anomalies ( p-value = 0.032, OR = 0.63) and ASD ( p-value = 0.039, OR = 1.94). The diagnostic rate for CMA in this study was 18%. We present the largest report of CMA data in a cohort with ND in Brazil. We characterize the rare CNVs found together with the main phenotypes presented by each patient, list phenotypes which could predict a higher diagnostic probability by CMA in patients with a neurodevelopmental disorder and show how CMA and classical karyotyping results are complementary.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm.

          Meiotic recombination and de novo mutation are the two main contributions toward gamete genome diversity, and many questions remain about how an individual human's genome is edited by these two processes. Here, we describe a high-throughput method for single-cell whole-genome analysis that was used to measure the genomic diversity in one individual's gamete genomes. A microfluidic system was used for highly parallel sample processing and to minimize nonspecific amplification. High-density genotyping results from 91 single cells were used to create a personal recombination map, which was consistent with population-wide data at low resolution but revealed significant differences from pedigree data at higher resolution. We used the data to test for meiotic drive and found evidence for gene conversion. High-throughput sequencing on 31 single cells was used to measure the frequency of large-scale genome instability, and deeper sequencing of eight single cells revealed de novo mutation rates with distinct characteristics. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mutations affecting components of the SWI/SNF complex cause Coffin-Siris syndrome.

            By exome sequencing, we found de novo SMARCB1 mutations in two of five individuals with typical Coffin-Siris syndrome (CSS), a rare autosomal dominant anomaly syndrome. As SMARCB1 encodes a subunit of the SWItch/Sucrose NonFermenting (SWI/SNF) complex, we screened 15 other genes encoding subunits of this complex in 23 individuals with CSS. Twenty affected individuals (87%) each had a germline mutation in one of six SWI/SNF subunit genes, including SMARCB1, SMARCA4, SMARCA2, SMARCE1, ARID1A and ARID1B.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The splicing regulator Rbfox1 (A2BP1) controls neuronal excitation in the mammalian brain

              The Rbfox family of RNA binding proteins regulates alternative splicing of many important neuronal transcripts but their role in neuronal physiology is not clear 1 . We show here that central nervous system (CNS)-specific deletion of the Rbfox1 gene results in heightened susceptibility to spontaneous and kainic acid-induced seizures. Electrophysiological recording reveals a corresponding increase in neuronal excitability in the dentate gyrus of the knockout mice. Whole transcriptome analyses identify multiple splicing changes in the Rbfox1−/− brain with few changes in overall transcript abundance. These splicing changes alter proteins that mediate synaptic transmission and membrane excitation, some of which are implicated in human epilepsy. Thus, Rbfox1 directs a genetic program required in the prevention of neuronal hyperexcitation and seizures. The Rbfox1 knockout mice provide a new model to study the post-transcriptional regulation of synaptic function.
                Bookmark

                Author and article information

                Contributors
                tiagochavo@msn.com
                afmaris@gmail.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                28 November 2019
                28 November 2019
                2019
                : 9
                : 17776
                Affiliations
                [1 ]ISNI 0000 0001 2188 7235, GRID grid.411237.2, Universidade Federal de Santa Catarina, ; Florianópolis, SC Brazil
                [2 ]Laboratory Neurogene, Florianópolis, SC Brazil
                [3 ]Children’s Hospital Joana de Gusmão, Florianópolis, SC Brazil
                [4 ]University Hospital Professor Polydoro Ernani de São Thiago, Florianópolis, SC Brazil
                Author information
                http://orcid.org/0000-0001-5324-412X
                Article
                54347
                10.1038/s41598-019-54347-z
                6882836
                31780800
                7ec55616-28da-4c7b-bd33-70039ec0757e
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 4 June 2019
                : 13 November 2019
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                genetic testing,cytogenetics,genetic counselling,autism spectrum disorders
                Uncategorized
                genetic testing, cytogenetics, genetic counselling, autism spectrum disorders

                Comments

                Comment on this article