1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Global analysis of daily new COVID-19 cases reveals many static-phase countries including the United States potentially with unstoppable epidemic

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          BACKGROUND

          The coronavirus disease 2019 (COVID-19) pandemic is hitting many countries. It is hypothesized the epidemic is differentially progressing in different countries.

          AIM

          To investigate how the COVID-19 epidemic is going on in different countries by analyzing representative countries.

          METHODS

          The status of COVID-19 epidemic in over 60 most affected countries was characterized. The data of daily new cases of each country were collected from Worldometer. The data of daily tests for the United States, Italy, and South Korea were collected from the Website of One World Data. Levels of daily positive COVID-19 tests in the two most affected states of the United States (New York and New Jersey) were collected from the website of the COVID Tracking Project. Statistics were analyzed using Microcal Origin software with ANOVA algorithm, and significance level was set at a P value of 0.05.

          RESULTS

          The COVID-19 epidemic was differentially progressing in different countries. Comparative analyses of daily new cases as of April 19, 2020 revealed that 61 most affected countries can be classified into four types: Downward (22), upward (20), static-phase (12), and uncertain ones (7). In particular, the 12 static-phase countries including the United States were characterized by largely constant numbers of daily new cases in the past over 14 d. Furthermore, these static-phase countries were overall significantly lower in testing density ( P = 0.016) but higher in the level of positive COVID-19 tests than downward countries ( P = 0.028). These findings suggested that the testing capacity in static-phase countries was lagging behind the spread of the outbreak, i.e., daily new cases (confirmed) were likely less than daily new infections and the remaining undocumented infections were thus still expanding, resulting in unstoppable epidemic.

          CONCLUSION

          Increasing the testing capacity and/or reducing the COVID-19 transmission are urgently needed to stop the potentially unstoppable, severing crisis in static-phase countries.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          [The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China].

          (2020)
          Objective: An outbreak of 2019 novel coronavirus diseases (COVID-19) in Wuhan, China has spread quickly nationwide. Here, we report results of a descriptive, exploratory analysis of all cases diagnosed as of February 11, 2020. Methods: All COVID-19 cases reported through February 11, 2020 were extracted from China's Infectious Disease Information System. Analyses included: 1) summary of patient characteristics; 2) examination of age distributions and sex ratios; 3) calculation of case fatality and mortality rates; 4) geo-temporal analysis of viral spread; 5) epidemiological curve construction; and 6) subgroup analysis. Results: A total of 72 314 patient records-44 672 (61.8%) confirmed cases, 16 186 (22.4%) suspected cases, 10567 (14.6%) clinical diagnosed cases (Hubei only), and 889 asymptomatic cases (1.2%)-contributed data for the analysis. Among confirmed cases, most were aged 30-79 years (86.6%), diagnosed in Hubei (74.7%), and considered mild (80.9%). A total of 1 023 deaths occurred among confirmed cases for an overall case-fatality rate of 2.3%. The COVID-19 spread outward from Hubei sometime after December 2019 and by February 11, 2020, 1 386 counties across all 31 provinces were affected. The epidemic curve of onset of symptoms peaked in January 23-26, then began to decline leading up to February 11. A total of 1 716 health workers have become infected and 5 have died (0.3%). Conclusions: The COVID-19 epidemic has spread very quickly. It only took 30 days to expand from Hubei to the rest of Mainland China. With many people returning from a long holiday, China needs to prepare for the possible rebound of the epidemic.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Association of Public Health Interventions With the Epidemiology of the COVID-19 Outbreak in Wuhan, China

            Was there an association of public health interventions with improved control of the COVID-19 outbreak in Wuhan, China? In this cohort study that included 32 583 patients with laboratory-confirmed COVID-19 in Wuhan from December 8, 2019, through March 8, 2020, the institution of interventions including cordons sanitaire , traffic restriction, social distancing, home quarantine, centralized quarantine, and universal symptom survey was temporally associated with reduced effective reproduction number of SARS-CoV-2 (secondary transmission) and the number of confirmed cases per day across age groups, sex, and geographic regions. A series of multifaceted public health interventions was temporally associated with improved control of the COVID-19 outbreak in Wuhan and may inform public health policy in other countries and regions. Coronavirus disease 2019 (COVID-19) has become a pandemic, and it is unknown whether a combination of public health interventions can improve control of the outbreak. To evaluate the association of public health interventions with the epidemiological features of the COVID-19 outbreak in Wuhan by 5 periods according to key events and interventions. In this cohort study, individual-level data on 32 583 laboratory-confirmed COVID-19 cases reported between December 8, 2019, and March 8, 2020, were extracted from the municipal Notifiable Disease Report System, including patients’ age, sex, residential location, occupation, and severity classification. Nonpharmaceutical public health interventions including cordons sanitaire , traffic restriction, social distancing, home confinement, centralized quarantine, and universal symptom survey. Rates of laboratory-confirmed COVID-19 infections (defined as the number of cases per day per million people), across age, sex, and geographic locations were calculated across 5 periods: December 8 to January 9 (no intervention), January 10 to 22 (massive human movement due to the Chinese New Year holiday), January 23 to February 1 ( cordons sanitaire , traffic restriction and home quarantine), February 2 to 16 (centralized quarantine and treatment), and February 17 to March 8 (universal symptom survey). The effective reproduction number of SARS-CoV-2 (an indicator of secondary transmission) was also calculated over the periods. Among 32 583 laboratory-confirmed COVID-19 cases, the median patient age was 56.7 years (range, 0-103; interquartile range, 43.4-66.8) and 16 817 (51.6%) were women. The daily confirmed case rate peaked in the third period and declined afterward across geographic regions and sex and age groups, except for children and adolescents, whose rate of confirmed cases continued to increase. The daily confirmed case rate over the whole period in local health care workers (130.5 per million people [95% CI, 123.9-137.2]) was higher than that in the general population (41.5 per million people [95% CI, 41.0-41.9]). The proportion of severe and critical cases decreased from 53.1% to 10.3% over the 5 periods. The severity risk increased with age: compared with those aged 20 to 39 years (proportion of severe and critical cases, 12.1%), elderly people (≥80 years) had a higher risk of having severe or critical disease (proportion, 41.3%; risk ratio, 3.61 [95% CI, 3.31-3.95]) while younger people (<20 years) had a lower risk (proportion, 4.1%; risk ratio, 0.47 [95% CI, 0.31-0.70]). The effective reproduction number fluctuated above 3.0 before January 26, decreased to below 1.0 after February 6, and decreased further to less than 0.3 after March 1. A series of multifaceted public health interventions was temporally associated with improved control of the COVID-19 outbreak in Wuhan, China. These findings may inform public health policy in other countries and regions. This population epidemiology study examines associations between phases of nonpharmaceutical public health interventions (social distancing, centralized quarantine, home confinement, and others) and rates of laboratory-confirmed COVID-19 infection in Wuhan, China, between December 2019 and early March 2020.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Only strict quarantine measures can curb the coronavirus disease (COVID-19) outbreak in Italy, 2020

              Several Italian towns are under lockdown to contain the COVID-19 outbreak. The level of transmission reduction required for physical distancing interventions to mitigate the epidemic is a crucial question. We show that very high adherence to community quarantine (total stay-home policy) and a small household size is necessary for curbing the outbreak in a locked-down town. The larger the household size and amount of time in the public, the longer the lockdown period needed.
                Bookmark

                Author and article information

                Contributors
                Journal
                World J Clin Cases
                WJCC
                World Journal of Clinical Cases
                Baishideng Publishing Group Inc
                2307-8960
                6 October 2020
                6 October 2020
                : 8
                : 19
                : 4431-4442
                Affiliations
                Department of Orthopaedics, Sichuan University West China Hospital, Chengdu 610041, Sichuan Province, China
                College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian Province, China
                Anxi AIER Eye Hospital (AIER EYE Hospital Group), Anxi 362400, Fujian Province, China. fu_zhifu@ 123456163.com
                Author notes

                Author contributions: Fu XM conceptually designed the study; Long C organized the data and performed the analyses; Fu ZF drafted the manuscript; and Fu XM made the revision to the manuscript.

                Supported by National Natural Science Foundation of China, No. 31972918 and No. 31770830 (to Fu XM).

                Corresponding author: Zhi-Fu Fu, MD, Chief Doctor, Anxi AIER Eye Hospital (AIER EYE Hospital Group), Anxi County, Anxi 362400, Fujian Province, China. fu_zhifu@ 123456163.com

                Article
                jWJCC.v8.i19.pg4431
                10.12998/wjcc.v8.i19.4431
                7559691
                33083402
                7f3f047f-ac2a-430f-a65a-1990afad9d9c
                ©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

                This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial.

                History
                : 15 June 2020
                : 20 June 2020
                : 27 August 2020
                Categories
                Scientometrics

                covid-19,sars-cov-2,coronavirus,pandemic,testing density
                covid-19, sars-cov-2, coronavirus, pandemic, testing density

                Comments

                Comment on this article