21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Intramitochondrial Zn2+ accumulation via the Ca2+ uniporter contributes to acute ischemic neurodegeneration.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ca(2+) and Zn(2+) have both been implicated in the induction of acute ischemic neurodegeneration. We recently examined changes in intracellular Zn(2+) and Ca(2+) in CA1 pyramidal neurons subjected to oxygen glucose deprivation (OGD), and found that Zn(2+) rises precede and contribute to the onset of terminal Ca(2+) rises ("Ca(2+) deregulation"), which are causatively linked to a lethal loss of membrane integrity. The present study seeks to examine the specific role of intramitochondrial Zn(2+) accumulation in ischemic injury, using blockers of the mitochondrial Ca(2+) uniporter (MCU), through which both Zn(2+) and Ca(2+) appear able to enter the mitochondrial matrix. In physiological extracellular Ca(2+), treatment with the MCU blocker, Ruthenium Red (RR), accelerated the Ca(2+) deregulation, most likely by disrupting mitochondrial Ca(2+) buffering and thus accelerating the lethal cytosolic Ca(2+) overload. However, when intracellular Ca(2+) overload was slowed, either by adding blockers of major Ca(2+) entry channels or by lowering the concentration of Ca(2+) in the extracellular buffer, Ca(2+) deregulation was delayed, and under these conditions either Zn(2+) chelation or MCU blockade resulted in similar further delays of the Ca(2+) deregulation. In parallel studies using the reactive oxygen species (ROS) indicator, hydroethidine, lowering Ca(2+) surprisingly accelerated OGD induced ROS generation, and in these low Ca(2+) conditions, either Zn(2+) chelation or MCU block slowed the ROS generation. These studies suggest that, during acute ischemia, Zn(2+) entry into mitochondria via the MCU induces mitochondrial dysfunction (including ROS generation) that occurs upstream of, and contributes to the terminal Ca(2+) deregulation.

          Related collections

          Author and article information

          Journal
          Neurobiol. Dis.
          Neurobiology of disease
          Elsevier BV
          1095-953X
          0969-9961
          Aug 2014
          : 68
          Affiliations
          [1 ] Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA; Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA. Electronic address: yvmedved@uci.edu.
          [2 ] Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA; Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92697, USA. Electronic address: jweiss@uci.edu.
          Article
          S0969-9961(14)00100-4 NIHMS590710
          10.1016/j.nbd.2014.04.011
          4065779
          24787898
          7f64c3f8-b974-41c7-8d6c-52d3a3cdbc30
          History

          Mitochondrial Ca(2+) uniporter,ROS,RU360,Reactive oxygen species,Ruthenium Red,Zinc,Calcium,Hippocampal slice,Ischemia,Mitochondria

          Comments

          Comment on this article