8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Improved Prediction of Surgical Resectability in Patients with Glioblastoma using an Artificial Neural Network

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In managing a patient with glioblastoma (GBM), a surgeon must carefully consider whether sufficient tumour can be removed so that the patient can enjoy the benefits of decompression and cytoreduction, without impacting on the patient’s neurological status. In a previous study we identified the five most important anatomical features on a pre-operative MRI that are predictive of surgical resectability and used them to develop a simple, objective, and reproducible grading system. The objective of this study was to apply an artificial neural network (ANN) to improve the prediction of surgical resectability in patients with GBM. Prospectively maintained databases were searched to identify adult patients with supratentorial GBM that underwent craniotomy and resection. Performance of the ANN was evaluated against logistic regression and the standard grading system by analysing their Receiver Operator Characteristic (ROC) curves; Area Under Curve (AUC) and accuracy were calculated and compared using Wilcoxon signed rank test with a value of p < 0.05 considered statistically significant. In all, 135 patients were included, of which 33 (24.4%) were found to have complete excision of all contrast-enhancing tumour. The AUC and accuracy were significantly greater using the ANN compared to the standard grading system (0.87 vs. 0.79 and 83% vs. 80% respectively; p < 0.01 in both cases). In conclusion, an ANN allows for the improved prediction of surgical resectability in patients with GBM.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Popular Ensemble Methods: An Empirical Study

          An ensemble consists of a set of individually trained classifiers (such as neural networks or decision trees) whose predictions are combined when classifying novel instances. Previous research has shown that an ensemble is often more accurate than any of the single classifiers in the ensemble. Bagging (Breiman, 1996c) and Boosting (Freund & Shapire, 1996; Shapire, 1990) are two relatively new but popular methods for producing ensembles. In this paper we evaluate these methods on 23 data sets using both neural networks and decision trees as our classification algorithm. Our results clearly indicate a number of conclusions. First, while Bagging is almost always more accurate than a single classifier, it is sometimes much less accurate than Boosting. On the other hand, Boosting can create ensembles that are less accurate than a single classifier -- especially when using neural networks. Analysis indicates that the performance of the Boosting methods is dependent on the characteristics of the data set being examined. In fact, further results show that Boosting ensembles may overfit noisy data sets, thus decreasing its performance. Finally, consistent with previous studies, our work suggests that most of the gain in an ensemble's performance comes in the first few classifiers combined; however, relatively large gains can be seen up to 25 classifiers when Boosting decision trees.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Machine Learning and Neurosurgical Outcome Prediction: A Systematic Review.

            Accurate measurement of surgical outcomes is highly desirable to optimize surgical decision-making. An important element of surgical decision making is identification of the patient cohort that will benefit from surgery before the intervention. Machine learning (ML) enables computers to learn from previous data to make accurate predictions on new data. In this systematic review, we evaluate the potential of ML for neurosurgical outcome prediction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Extent of resection in patients with glioblastoma: limiting factors, perception of resectability, and effect on survival.

              The extent of resection (EOR) is a known prognostic factor in patients with glioblastoma. However, gross-total resection (GTR) is not always achieved. Understanding the factors that prevent GTR is helpful in surgical planning and when counseling patients. The goal of this study was to identify demographic, tumor-related, and technical factors that influence EOR and to define the relationship between the surgeon's impression of EOR and radiographically determined EOR. The authors performed a retrospective review of the electronic medical records to identify all patients who underwent craniotomy for glioblastoma resection between 2006 and 2009 and who had both preoperative and postoperative MRI studies. Forty-six patients were identified and were included in the study. Image analysis software (FIJI) was used to perform volumetric analysis of tumor size and EOR based on preoperative and postoperative MRI. Using multivariate analysis, the authors assessed factors associated with EOR and residual tumor volume. Perception of resectability was described using bivariate statistics, and survival was described using the log-rank test and Kaplan-Meier curves. The EOR was less for tumors in eloquent areas (p = 0.014) and those touching ventricles (p = 0.031). Left parietal tumors had significantly greater residual volume (p = 0.042). The average EOR was 91.0% in this series. There was MRI-demonstrable residual tumor in 69.6% of cases (16 of 23) in which GTR was perceived by the surgeon. Expert reviewers agreed that GTR could be safely achieved in 37.0% of patients (17 of 46) in this series. Among patients with safely resectable tumors, radiographically complete resection was achieved in 23.5% of patients (4 of 17). An EOR greater than 90% was associated with a significantly greater 1-year survival (76.5%) than an EOR less than 90% (p = 0.005). The authors' findings confirm that tumor location affects EOR and suggest that EOR may also be influenced by the surgeon's ability to judge the presence of residual tumor during surgery. The surgeon's ability to judge completeness of resection during surgery is commonly inaccurate. The authors' study confirms the impact of EOR on 1-year survival.
                Bookmark

                Author and article information

                Contributors
                h.marcus@ucl.ac.uk
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                20 March 2020
                20 March 2020
                2020
                : 10
                : 5143
                Affiliations
                [1 ]Queen Elizabeth Hospital, Lewisham and Greenwich NHS Trust, London, UK
                [2 ]GRID grid.497851.6, Wellcome EPSRC centre for Interventional and Surgical Sciences, University College London, ; London, UK
                [3 ]ISNI 0000 0004 0612 2631, GRID grid.436283.8, Department of Neurosurgery, , National Hospital for Neurology and Neurosurgery, UCLH Foundation Trust, ; London, UK
                [4 ]ISNI 0000 0001 2191 5195, GRID grid.413820.c, Department of Neurosurgery, , Charing Cross Hospital, Imperial College Healthcare NHS Trust, ; London, UK
                Author information
                http://orcid.org/0000-0001-8000-392X
                Article
                62160
                10.1038/s41598-020-62160-2
                7083861
                32198487
                7fd20cb5-7796-43c1-88e7-a6e922bbf489
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 22 November 2019
                : 10 March 2020
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                cns cancer,surgical oncology
                Uncategorized
                cns cancer, surgical oncology

                Comments

                Comment on this article