Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Lopinavir-menthol co-crystals for enhanced dissolution rate and intestinal absorption

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lopinavir is an antiretroviral, antiparasitic agent and recently utilized in treatment of COVID-19. Unfortunately, lopinavir exhibited poor oral bioavailability due to poor dissolution, extensive pre-systemic metabolism, and significant P-glycoprotein intestinal efflux. Accordingly, the aim was to enhance dissolution rate and intestinal absorption of lopinavir. This employed co-processing with menthol which is believed to modify crystalline structures and inhibit intestinal efflux. Lopinavir was mixed with menthol at different molar ratios before ethanol assisted kneading. Formulations were evaluated using FTIR spectroscopy, differential scanning calorimetry (DSC), X-ray powder diffraction (XRD) and dissolution studies. Optimum ratio was utilized to assess lopinavir intestinal permeability. This employed in situ rabbit intestinal perfusion technique. FTIR, DSC and XRD indicated formation of lopinavir-menthol co-crystals at optimum molar ratio of 1:2. Additional menthol underwent phase separation due to possible self-association. Co-crystallization significantly enhanced lopinavir dissolution rate compared with pure drug to increase the dissolution efficiency from 24.96% in case of unprocessed lopinavir to 91.43% in optimum formulation. Lopinavir showed incomplete absorption from duodenum and jejuno-iliac segments with lower absorptive clearance from jejuno-ileum reflecting P-gp efflux. Co-perfusion with menthol increased lopinavir intestinal permeability. The study introduced menthol as co-crystal co-former for enhanced dissolution and augmented intestinal absorption of lopinavir.

          Graphical abstract

          Related collections

          Most cited references67

          • Record: found
          • Abstract: not found
          • Article: not found

          The concept of dissolution efficiency.

          Abu Khan (1974)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lopinavir loaded solid lipid nanoparticles (SLN) for intestinal lymphatic targeting.

            The poor orally available lopinavir was successfully encapsulated in glyceryl behenate based solid lipid nanoparticles (Lo-SLN) for its ultimate use to target intestinal lymphatic vessels in combined chemotherapy-the so-called Highly Active Anti-Retroviral Therapy (HAART). SLN with mean particle size of 230 nm (polydispersity index, PDI<0.27) and surface electrical charge of approx. -27mV, were produced by hot homogenization process followed by ultrasonication. Particles were characterized using differential scanning calorimetry (DSC), wide angle X-ray scattering (WAXS) and atomic force microscopy (AFM) to confirm their solid character and the homogeneous distribution of drug within the lipid matrix. In vitro release studies at pH 6.8 phosphate buffer (PBS) and at pH 1.2 HCl 0.1N showed a slow release in both media. From the intestinal lymphatic transport study it became evident that SLN increased the cumulative percentage dose of lopinavir secreted into the lymph, which was 4.91-fold higher when compared with a conventional drug solution in methyl cellulose 0.5% (w/v) as suspending agent (Lo-MC). The percentage bioavailability was significantly enhanced. The AUC for the Lo-SLN was 2.13-fold higher than that obtained for the Lo-MC of similar concentration. The accelerated stability studies showed that there was no significant change in the mean particle size and PDI after storage at 25±2°C/60±5% RH. The shelf life of optimized formulation was assessed based on the remained drug content in the stabilized formulation and was shown to be 21.46 months. Copyright © 2010 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tailoring supersaturation from amorphous solid dispersions

              The maximum achievable concentration of a drug in solution is dictated by the chemical potential of the solid form. Because an amorphous solid has a higher chemical potential than the corresponding crystal form, in the absence of phase transformations, a higher transient solubility is expected. However, the chemical potential of an amorphous drug can be reduced by mixing with another component. Therefore, upon mixing with a polymer to form an amorphous solid dispersion (ASD), the maximum solution concentration achieved can be potentially altered, in particular if the polymer is poorly soluble in the dissolution medium. Such changes in the chemical potential of the drug may be a critical factor in determining the maximum achievable solution concentration, and could alter the crystallization driving force of the drug. Therefore, the aim of this study was to gain insights into the impact of poorly soluble polymers on the “amorphous solubility” of drugs formulated as amorphous solid dispersions. Lopinavir was selected as a model drug with a low crystallization tendency, enabling determination of the amorphous solubility as a function of ASD composition. Model polymers included cellulose acetate (CA), CA phthalate (CAP), ethylcellulose (EC), Eudragit® RL PO (EUD), hydroxypropylmethylcellulose (HPMC), HPMC acetate succinate (HPMCAS), and HPMC phthalate (HPMCP). The “amorphous solubility” of the drug alone was determined and then the changes in maximum achievable concentration were measured as a function of drug loading. Drug-polymer interactions were characterized using infrared spectroscopy (IR), differential scanning calorimetry (DSC) and moisture sorption analysis. The results showed that the maximum achievable concentration (“amorphous solubility”) of lopinavir varied with the extent of drug-polymer interactions, as well as the drug weight fraction in the ASD. This information is of great value when evaluating the maximum achievable concentration of amorphous systems formulated with pH responsive polymers, and should contribute to a broader understanding of drug phase behavior in the context of ASDs.
                Bookmark

                Author and article information

                Journal
                J Drug Deliv Sci Technol
                J Drug Deliv Sci Technol
                Journal of Drug Delivery Science and Technology
                Published by Elsevier B.V.
                1773-2247
                2588-8943
                11 July 2022
                11 July 2022
                : 103587
                Affiliations
                [1]Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Tanta, Tanta, Egypt
                Author notes
                []Corresponding author.
                Article
                S1773-2247(22)00498-1 103587
                10.1016/j.jddst.2022.103587
                9272570
                35845293
                807caf38-4e5f-48ff-8a2c-363c9b80f73f
                © 2022 Published by Elsevier B.V.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 6 April 2022
                : 27 June 2022
                : 8 July 2022
                Categories
                Article

                lopinavir,menthol,co-crystal,dissolution rate,intestinal permeability,in situ

                Comments

                Comment on this article