3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparative metabolomic analysis of Sinorhizobium sp. C4 during the degradation of phenanthrene

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Comparative metabolic responses of Sinorhizobium sp. C4 were investigated. Comprehensive metabolites profiles, including polar metabolites, fatty acids, and polyhydroxyalkanoates were evaluated through untargeted metabolome analyses. Intracellular metabolomes during the degradation of phenanthrene were compared with those from natural carbon sources. Principal component analysis showed a clear separation of metabolomes of phenanthrene degradation from other carbon sources. Shift to more hydrophobic fatty acid was observed from the analysis of fatty acid methyl ester. Polyhydroxyalkanoate from strain C4 was composed mainly with 3-hydroxybutyric acid and small amount of 3-hydroxypentanoic acid, while the monomeric composition was independent on carbon sources. However, the amount of polyhydroxyalkanoates during degradation of phenanthrene was 50–210% less than those from other carbon sources. Among 207 gas chromatography–mass spectrometry peaks from the polar metabolite fraction, 60% of the peaks were identified and compared. Several intermediates in tricarboxylic acid cycles and glycolysis were increased during phenanthrene degradation. Accumulation of trehalose was also evident in the phenanthrene-treated bacterium. Some amino acid, including branched amino acids, glycine, homoserine, and valine, were also increased, while more than 70% of identified metabolites were decreased during the phenanthrene metabolism. Accumulation of sulfur amino acids and nicotinic acid suggested the possible oxidative stress conditions during phenanthrene metabolism.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          The composite genome of the legume symbiont Sinorhizobium meliloti.

          The scarcity of usable nitrogen frequently limits plant growth. A tight metabolic association with rhizobial bacteria allows legumes to obtain nitrogen compounds by bacterial reduction of dinitrogen (N2) to ammonium (NH4+). We present here the annotated DNA sequence of the alpha-proteobacterium Sinorhizobium meliloti, the symbiont of alfalfa. The tripartite 6.7-megabase (Mb) genome comprises a 3.65-Mb chromosome, and 1.35-Mb pSymA and 1.68-Mb pSymB megaplasmids. Genome sequence analysis indicates that all three elements contribute, in varying degrees, to symbiosis and reveals how this genome may have emerged during evolution. The genome sequence will be useful in understanding the dynamics of interkingdom associations and of life in soil environments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates.

            Polyhydroxyalkanoates (PHAs), of which polyhydroxybutyrate (PHB) is the most abundant, are bacterial carbon and energy reserve materials of widespread occurrence. They are composed of 3-hydroxyacid monomer units and exist as a small number of cytoplasmic granules per cell. The properties of the C4 homopolymer PHB as a biodegradable thermoplastic first attracted industrial attention more than 20 years ago. Copolymers of C4 (3-hydroxybutyrate [3HB]) and C5 (3-hydroxyvalerate [3HV]) monomer units have modified physical properties; e.g., the plastic is less brittle than PHB, whereas PHAs containing C8 to C12 monomers behave as elastomers. This family of materials is the centre of considerable commercial interest, and 3HB-co-3HV copolymers have been marketed by ICI plc as Biopol. The known polymers exist as 2(1) helices with the fiber repeat decreasing from 0.596 nm for PHB to about 0.45 nm for C8 to C10 polymers. Novel copolymers with a backbone of 3HB and 4HB have been obtained. The native granules contain noncrystalline polymer, and water may possibly act as a plasticizer. Although the biosynthesis and regulation of PHB are generally well understood, the corresponding information for the synthesis of long-side-chain PHAs from alkanes, alcohols, and organic acids is still incomplete. The precise mechanisms of action of the polymerizing and depolymerizing enzymes also remain to be established. The structural genes for the three key enzymes of PHB synthesis from acetyl coenzyme A in Alcaligenes eutrophus have been cloned, sequenced, and expressed in Escherichia coli. Polymer molecular weights appear to be species specific. The factors influencing the commercial choice of organism, substrate, and isolation process are discussed. The physiological functions of PHB as a reserve material and in symbiotic nitrogen fixation and its presence in bacterial plasma membranes and putative role in transformability and calcium signaling are also considered.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Multiple high-throughput analyses monitor the response of E. coli to perturbations.

              Analysis of cellular components at multiple levels of biological information can provide valuable functional insights. We performed multiple high-throughput measurements to study the response of Escherichia coli cells to genetic and environmental perturbations. Analysis of metabolic enzyme gene disruptants revealed unexpectedly small changes in messenger RNA and proteins for most disruptants. Overall, metabolite levels were also stable, reflecting the rerouting of fluxes in the metabolic network. In contrast, E. coli actively regulated enzyme levels to maintain a stable metabolic state in response to changes in growth rate. E. coli thus seems to use complementary strategies that result in a metabolic network robust against perturbations.
                Bookmark

                Author and article information

                Contributors
                kjh2404@snu.ac.kr
                Journal
                Appl Microbiol Biotechnol
                Appl. Microbiol. Biotechnol
                Applied Microbiology and Biotechnology
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0175-7598
                1432-0614
                1 October 2008
                1 October 2008
                2008
                : 80
                : 5
                : 863-872
                Affiliations
                [1 ]GRID grid.31501.36, ISNI 0000000404705905, Department of Agricultural Biotechnology, , Seoul National University, ; San56-1, Silim-dong, Gwanak-Gu, Seoul, Republic of Korea
                [2 ]GRID grid.418982.e, Korea Institute of Toxicology, ; 19 Shinseong-ro, Yuseong-gu, Daejeon, Republic of Korea
                [3 ]GRID grid.162346.4, ISNI 0000000114821895, Department of Biosciences and Biogengineering, , University of Hawaii, ; 1955 East-West Road, Honolulu, HI 96822 USA
                Article
                1581
                10.1007/s00253-008-1581-4
                7419452
                18668240
                80868a6c-5bab-4930-a5f8-94473e60a637
                © The Author(s) 2008

                Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

                History
                : 14 April 2008
                : 16 June 2008
                : 18 June 2008
                Categories
                Applied Microbial and Cell Physiology
                Custom metadata
                © Springer-Verlag 2008

                Biotechnology
                sinorhizobium,polycyclic aromatic hydrocarbon,metabolomics,polyhydroxyalkanoate,fatty acids

                Comments

                Comment on this article