22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Optimal escape from metastable states driven by non-Gaussian noise

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We investigate escape processes from metastable states that are driven by non-Gaussian noise. Using a path integral approach, we define a weak-noise scaling limit that identifies optimal escape paths as minima of a stochastic action, while retaining the infinite hierarchy of noise cumulants. This enables us to investigate the effect of different noise amplitude distributions. We find generically a reduced effective potential barrier but also fundamental differences, particularly for the limit when the non-Gaussian noise pulses are relatively slow. Here we identify a class of amplitude distributions that can induce a single-jump escape from the potential well. Our results highlight that higher-order noise cumulants crucially influence escape behaviour even in the weak-noise limit.

          Related collections

          Most cited references2

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The large deviation approach to statistical mechanics

          The theory of large deviations is concerned with the exponential decay of probabilities of large fluctuations in random systems. These probabilities are important in many fields of study, including statistics, finance, and engineering, as they often yield valuable information about the large fluctuations of a random system around its most probable state or trajectory. In the context of equilibrium statistical mechanics, the theory of large deviations provides exponential-order estimates of probabilities that refine and generalize Einstein's theory of fluctuations. This review explores this and other connections between large deviation theory and statistical mechanics, in an effort to show that the mathematical language of statistical mechanics is the language of large deviation theory. The first part of the review presents the basics of large deviation theory, and works out many of its classical applications related to sums of random variables and Markov processes. The second part goes through many problems and results of statistical mechanics, and shows how these can be formulated and derived within the context of large deviation theory. The problems and results treated cover a wide range of physical systems, including equilibrium many-particle systems, noise-perturbed dynamics, nonequilibrium systems, as well as multifractals, disordered systems, and chaotic systems. This review also covers many fundamental aspects of statistical mechanics, such as the derivation of variational principles characterizing equilibrium and nonequilibrium states, the breaking of the Legendre transform for nonconcave entropies, and the characterization of nonequilibrium fluctuations through fluctuation relations.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            First exit times of SDEs driven by stable Lévy processes

              Bookmark

              Author and article information

              Journal
              1501.00374

              Condensed matter,Mathematical & Computational physics
              Condensed matter, Mathematical & Computational physics

              Comments

              Comment on this article