13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A New Human NHERF1 Mutation Decreases Renal Phosphate Transporter NPT2a Expression by a PTH-Independent Mechanism

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The sodium-hydrogen exchanger regulatory factor 1 (NHERF1) binds to the main renal phosphate transporter NPT2a and to the parathyroid hormone (PTH) receptor. We have recently identified mutations in NHERF1 that decrease renal phosphate reabsorption by increasing PTH-induced cAMP production in the renal proximal tubule.

          Methods

          We compared relevant parameters of phosphate homeostasis in a patient with a previously undescribed mutation in NHERF1 and in control subjects. We expressed the mutant NHERF1 protein in Xenopus Oocytes and in cultured cells to study its effects on phosphate transport and PTH-induced cAMP production.

          Results

          We identified in a patient with inappropriate renal phosphate reabsorption a previously unidentified mutation (E68A) located in the PDZ1 domain of NHERF1.We report the consequences of this mutation on NHERF1 function. E68A mutation did not modify cAMP production in the patient. PTH-induced cAMP synthesis and PKC activity were not altered by E68A mutation in renal cells in culture. In contrast to wild-type NHERF1, expression of the E68A mutant in Xenopus oocytes and in human cells failed to increase phosphate transport. Pull down experiments showed that E68A mutant did not interact with NPT2a, which robustly interacted with wild type NHERF1 and previously identified mutants. Biotinylation studies revealed that E68A mutant was unable to increase cell surface expression of NPT2a.

          Conclusions

          Our results indicate that the PDZ1 domain is critical for NHERF1- NPT2a interaction in humans and for the control of NPT2a expression at the plasma membrane. Thus we have identified a new mechanism of renal phosphate loss and shown that different mutations in NHERF1 can alter renal phosphate reabsorption via distinct mechanisms.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities.

          Npt2 encodes a renal-specific, brush-border membrane Na+-phosphate (Pi) cotransporter that is expressed in the proximal tubule where the bulk of filtered Pi is reabsorbed. Mice deficient in the Npt2 gene were generated by targeted mutagenesis to define the role of Npt2 in the overall maintenance of Pi homeostasis, determine its impact on skeletal development, and clarify its relationship to autosomal disorders of renal Pi reabsorption in humans. Homozygous mutants (Npt2(-/-)) exhibit increased urinary Pi excretion, hypophosphatemia, an appropriate elevation in the serum concentration of 1,25-dihydroxyvitamin D with attendant hypercalcemia, hypercalciuria and decreased serum parathyroid hormone levels, and increased serum alkaline phosphatase activity. These biochemical features are typical of patients with hereditary hypophosphatemic rickets with hypercalciuria (HHRH), a Mendelian disorder of renal Pi reabsorption. However, unlike HHRH patients, Npt2(-/-) mice do not have rickets or osteomalacia. At weaning, Npt2(-/-) mice have poorly developed trabecular bone and retarded secondary ossification, but, with increasing age, there is a dramatic reversal and eventual overcompensation of the skeletal phenotype. Our findings demonstrate that Npt2 is a major regulator of Pi homeostasis and necessary for normal skeletal development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            NHERF1 mutations and responsiveness of renal parathyroid hormone.

            Impaired renal phosphate reabsorption, as measured by dividing the tubular maximal reabsorption of phosphate by the glomerular filtration rate (TmP/GFR), increases the risks of nephrolithiasis and bone demineralization. Data from animal models suggest that sodium-hydrogen exchanger regulatory factor 1 (NHERF1) controls renal phosphate transport. We sequenced the NHERF1 gene in 158 patients, 94 of whom had either nephrolithiasis or bone demineralization. We identified three distinct mutations in seven patients with a low TmP/GFR value. No patients with normal TmP/GFR values had mutations. The mutants expressed in cultured renal cells increased the generation of cyclic AMP (cAMP) by parathyroid hormone (PTH) and inhibited phosphate transport. These NHERF1 mutations suggest a previously unrecognized cause of renal phosphate loss in humans. 2008 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Na(+)/H(+ ) exchanger regulatory factor 2 directs parathyroid hormone 1 receptor signalling.

              The parathyroid hormone 1 receptor (PTH1R) is a class II G-protein-coupled receptor. PTH1R agonists include both PTH, a hormone that regulates blood calcium and phosphate, and PTH-related protein (PTHrP), a paracrine/autocrine factor that is essential for development, particularly of the skeleton. Adenylyl cyclase activation is thought to be responsible for most cellular responses to PTH and PTHrP, although many actions appear to be independent of adenylyl cyclase. Here we show that the PTH1R binds to Na(+)/H(+) exchanger regulatory factors (NHERF) 1 and 2 through a PDZ-domain interaction in vitro and in PTH target cells. NHERF2 simultaneously binds phospholipase C beta 1 and an atypical, carboxyl-terminal PDZ consensus motif, ETVM, of the PTH1R through PDZ1 and PDZ2, respectively. PTH treatment of cells that express the NHERF2 PTH1R complex markedly activates phospholipase C beta and inhibits adenylyl cyclase through stimulation of inhibitory G proteins (G(i/o) proteins). NHERF-mediated assembly of PTH1R and phospholipase C beta is a unique mechanism to regulate PTH signalling in cells and membranes of polarized cells that express NHERF, which may account for many tissue- and cell-specific actions of PTH/PTHrP and may also be relevant to signalling by many G-protein-coupled receptors.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                10 April 2012
                : 7
                : 4
                : e34764
                Affiliations
                [1 ]Faculté de Médecine, Université Paris Descartes, Paris, France
                [2 ]Research Center, Growth and Signaling, INSERM U845, Paris, France
                [3 ]Service de Physiologie - Explorations Fonctionnelles, Hôpital Necker-Enfants Malades, Paris, France
                [4 ]Hôpital Bichat Claude Bernard, Institut Fédératif de Recherche 02, INSERM, Université Paris Diderot, Paris, France
                [5 ]Department of Pharmacology, School of Medicine, Emory University, Atlanta, Georgia, United States of America
                [6 ]Service de Physiologie - Explorations Fonctionnelles, Hôpital Européen Georges Pompidou, Paris, France
                University of Pittsburgh, School of Medicine, United States of America
                Author notes

                Conceived and designed the experiments: DP GF BG GP RAH. Performed the experiments: MC NB CS RAH CL LB DP. Analyzed the data: DP BG GF RAH GP MC. Contributed reagents/materials/analysis tools: CL CS LB BG DP RAH. Wrote the paper: DP.

                Article
                PONE-D-11-20934
                10.1371/journal.pone.0034764
                3323571
                22506049
                814fdeeb-4157-420c-acc7-c8317f801545
                Courbebaisse et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 24 October 2011
                : 5 March 2012
                Page count
                Pages: 8
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Biochemistry
                Proteins
                Protein Structure
                Computational Biology
                Macromolecular Structure Analysis
                Protein Structure
                Genetics
                Genetic Mutation
                Mutation Types
                Gene Function
                Genetics of Disease
                Medicine
                Anatomy and Physiology
                Nephrology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article