26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Quadrupling efficiency in production of genetically modified pigs through improved oocyte maturation

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p id="d2910463e278">The efficiency of production of genetically altered piglets for agricultural and biomedical purposes is very low, in large part because of the poor quality of the in vitro-matured oocytes used to initiate the process. Here, we describe a chemically defined culture medium that enhances porcine oocyte maturation and subsequent embryo development to the blastocyst stage, and increases the number of offspring born after embryo transfer, thereby effectively quadrupling the efficiency of piglet production. This research also provides some insights into the physiological events that lead to oocyte competence and how the efficacy of oocyte in vitro maturation might be improved in other species. </p><p class="first" id="d2910463e281">Assisted reproductive technologies in all mammals are critically dependent on the quality of the oocytes used to produce embryos. For reasons not fully clear, oocytes matured in vitro tend to be much less competent to become fertilized, advance to the blastocyst stage, and give rise to live young than their in vivo-produced counterparts, particularly if they are derived from immature females. Here we show that a chemically defined maturation medium supplemented with three cytokines (FGF2, LIF, and IGF1) in combination, so-called “FLI medium,” improves nuclear maturation of oocytes in cumulus–oocyte complexes derived from immature pig ovaries and provides a twofold increase in the efficiency of blastocyst production after in vitro fertilization. Transfer of such blastocysts to recipient females doubles mean litter size to about nine piglets per litter. Maturation of oocytes in FLI medium, therefore, effectively provides a fourfold increase in piglets born per oocyte collected. As they progress in culture, the FLI-matured cumulus–oocyte complexes display distinctly different kinetics of MAPK activation in the cumulus cells, much increased cumulus cell expansion, and an accelerated severance of cytoplasmic projections between the cumulus cells outside the zona pellucida and the oocyte within. These events likely underpin the improvement in oocyte quality achieved by using the FLI medium. </p>

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality.

          Oocyte quality is a key limiting factor in female fertility, yet we have a poor understanding of what constitutes oocyte quality or the mechanisms governing it. The ovarian follicular microenvironment and maternal signals, mediated primarily through granulosa cells (GCs) and cumulus cells (CCs), are responsible for nurturing oocyte growth, development and the gradual acquisition of oocyte developmental competence. However, oocyte-GC/CC communication is bidirectional with the oocyte secreting potent growth factors that act locally to direct the differentiation and function of CCs. Two important oocyte-secreted factors (OSFs) are growth-differentiation factor 9 and bone morphogenetic protein 15, which activate signaling pathways in CCs to regulate key genes and cellular processes required for CC differentiation and for CCs to maintain their distinctive phenotype. Hence, oocytes appear to tightly control their neighboring somatic cells, directing them to perform functions required for appropriate development of the oocyte. This oocyte-CC regulatory loop and the capacity of oocytes to regulate their own microenvironment by OSFs may constitute important components of oocyte quality. In support of this notion, it has recently been demonstrated that supplementing oocyte in vitro maturation (IVM) media with exogenous OSFs improves oocyte developmental potential, as evidenced by enhanced pre- and post-implantation embryo development. This new perspective on oocyte-CC interactions is improving our knowledge of the processes regulating oocyte quality, which is likely to have a number of applications, including improving the efficiency of clinical IVM and thereby providing new options for the treatment of infertility.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            EGF-like growth factors as mediators of LH action in the ovulatory follicle.

            Before ovulation in mammals, a cascade of events resembling an inflammatory and/or tissue remodeling process is triggered by luteinizing hormone (LH) in the ovarian follicle. Many LH effects, however, are thought to be indirect because of the restricted expression of its receptor. Here, we demonstrate that LH stimulation induces the transient and sequential expression of the epidermal growth factor (EGF) family members amphiregulin, epiregulin, and beta-cellulin. Incubation of follicles with these growth factors recapitulates the morphological and biochemical events triggered by LH, including cumulus expansion and oocyte maturation. Thus, these EGF-related growth factors are paracrine mediators that propagate the LH signal throughout the follicle.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MAPK3/1 (ERK1/2) in ovarian granulosa cells are essential for female fertility.

              A surge of luteinizing hormone (LH) from the pituitary gland triggers ovulation, oocyte maturation, and luteinization for successful reproduction in mammals. Because the signaling molecules RAS and ERK1/2 (extracellular signal-regulated kinases 1 and 2) are activated by an LH surge in granulosa cells of preovulatory follicles, we disrupted Erk1/2 in mouse granulosa cells and provide in vivo evidence that these kinases are necessary for LH-induced oocyte resumption of meiosis, ovulation, and luteinization. In addition, biochemical analyses and selected disruption of the Cebpb gene in granulosa cells demonstrate that C/EBPbeta (CCAAT/Enhancer-binding protein-beta) is a critical downstream mediator of ERK1/2 activation. Thus, ERK1/2 and C/EBPbeta constitute an in vivo LH-regulated signaling pathway that controls ovulation- and luteinization-related events.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                July 18 2017
                July 18 2017
                July 18 2017
                July 03 2017
                : 114
                : 29
                : E5796-E5804
                Article
                10.1073/pnas.1703998114
                5530680
                28673989
                818e3c30-8940-47cf-8cb0-d0c0e459f76e
                © 2017

                Free to read

                http://www.pnas.org/site/misc/userlicense.xhtml

                History

                Comments

                Comment on this article