12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reliable Multi-Path Routing Schemes for Real-Time Streaming

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In off-line streaming, packet level erasure resilient Forward Error Correction (FEC) codes rely on the unrestricted buffering time at the receiver. In real-time streaming, the extremely short playback buffering time makes FEC inefficient for protecting a single path communication against long link failures. It has been shown that one alternative path added to a single path route makes packet level FEC applicable even when the buffering time is limited. Further path diversity, however, increases the number of underlying links increasing the total link failure rate, requiring from the sender possibly more FEC packets. We introduce a scalar coefficient for rating a multi-path routing topology of any complexity. It is called Redundancy Overall Requirement (ROR) and is proportional to the total number of adaptive FEC packets required for protection of the communication. With the capillary routing algorithm, introduced in this paper we build thousands of multi-path routing patterns. By computing their ROR coefficients, we show that contrary to the expectations the overall requirement in FEC codes is reduced when the further diversity of dual-path routing is achieved by the capillary routing algorithm.

          Related collections

          Author and article information

          Journal
          17 November 2006
          Article
          cs/0611086
          81b92570-a674-4cff-8a4e-9875365facf2
          History
          Custom metadata
          Emin Gabrielyan, "Reliable Multi-Path Routing Schemes for Voice over Packet Networks", ICDT'06, International Conference on Digital Telecommunications, Cote d'Azur, France, 29-31 August 2006, pp. 65-72
          cs.NI cs.IT math.IT

          Comments

          Comment on this article