Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chemotherapy-elicited exosomal miR-378a-3p and miR-378d promote breast cancer stemness and chemoresistance via the activation of EZH2/STAT3 signaling

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Not all breast cancer (BC) patients who receive neoadjuvant chemotherapy achieve a pathologic complete response (pCR), but the reasons for this are unknown. Previous studies have shown that exosomes produced in the tumor microenvironment in response to chemotherapy promote a chemotherapy-resistant phenotype in tumors. However, the role of BC chemotherapy-elicited exosomes in regulating chemoresistance is poorly understood.

          Methods

          Using commercial kits, serum exosomes were extracted from patients before neoadjuvant chemotherapy, after one cycle of chemotherapy and after four cycles of chemotherapy consisting of doxorubicin (DOX) and paclitaxel (PTX). Their miRNAs were sequenced, and the correlation between the sequencing results and chemotherapy effects was further verified by RT-qPCR using patient serum exosomes. Cell Counting Kit-8 (CCK-8) was used to detect chemosensitivity. Stemness was assessed by CD44+/CD24- population analysis and mammosphere formation assays. Chromatin immunoprecipitation (ChIP) experiments were performed to verify the binding of signal transducer and activator of transcription 3 (STAT3) to the promoter of miRNAs.

          Results

          Here, we provide clinical evidence that chemotherapy-elicited exosomal miR-378a-3p and miR-378d are closely related to the chemotherapy response and that exosomes produced by BC cells after stimulation with DOX or PTX deliver miR-378a-3p and miR-378d to neighboring cells to activate WNT and NOTCH stemness pathways and induce drug resistance by targeting Dickkopf 3 (DKK3) and NUMB. In addition, STAT3, which is enhanced by zeste homolog 2 (EZH2), bound to the promoter regions of miR-378a-3p and miR-378d, thereby increasing their expression in exosomes. More importantly, chemotherapeutic agents combined with the EZH2 inhibitor tazemetostat reversed chemotherapy-elicited exosome-induced drug resistance in a nude mouse tumor xenograft model.

          Conclusion

          This study revealed a novel mechanism of acquired chemoresistance whereby chemotherapy activates the EZH2/STAT3 axis in BC cells, which then secrete chemotherapy-elicited exosomes enriched in miR-378a-3p and miR-378d. These exosomes are absorbed by chemotherapy-surviving BC cells, leading to activation of the WNT and NOTCH stem cell pathways via the targeting of DKK3 and NUMB and subsequently resulting in drug resistance. Therefore, blocking this adaptive mechanism during chemotherapy may reduce the development of chemotherapy resistance and maximize the therapeutic effect.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s13046-021-01901-1.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation

          Cancer progression involves the gradual loss of a differentiated phenotype and acquisition of progenitor and stem-cell-like features. Here, we provide novel stemness indices for assessing the degree of oncogenic dedifferentiation. We used an innovative one-class logistic regression (OCLR) machine-learning algorithm to extract transcriptomic and epigenetic feature sets derived from non-transformed pluripotent stem cells and their differentiated progeny. Using OCLR, we were able to identify previously undiscovered biological mechanisms associated with the dedifferentiated oncogenic state. Analyses of the tumor microenvironment revealed unanticipated correlation of cancer stemness with immune checkpoint expression and infiltrating immune cells. We found that the dedifferentiated oncogenic phenotype was generally most prominent in metastatic tumors. Application of our stemness indices to single-cell data revealed patterns of intra-tumor molecular heterogeneity. Finally, the indices allowed for the identification of novel targets and possible targeted therapies aimed at tumor differentiation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Triple-negative breast cancer.

            Triple-negative breast cancer, so called because it lacks expression of the estrogen receptor, progesterone receptor, and HER2, is often, but not always, a basal-like breast cancer. This review focuses on its origin, molecular and clinical characteristics, and treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Current knowledge on exosome biogenesis and release

              Exosomes are nanosized membrane vesicles released by fusion of an organelle of the endocytic pathway, the multivesicular body, with the plasma membrane. This process was discovered more than 30 years ago, and during these years, exosomes have gone from being considered as cellular waste disposal to mediate a novel mechanism of cell-to-cell communication. The exponential interest in exosomes experienced during recent years is due to their important roles in health and disease and to their potential clinical application in therapy and diagnosis. However, important aspects of the biology of exosomes remain unknown. To explore the use of exosomes in the clinic, it is essential that the basic molecular mechanisms behind the transport and function of these vesicles are better understood. We have here summarized what is presently known about how exosomes are formed and released by cells. Moreover, other cellular processes related to exosome biogenesis and release, such as autophagy and lysosomal exocytosis are presented. Finally, methodological aspects related to exosome release studies are discussed.
                Bookmark

                Author and article information

                Contributors
                zhangjintjmuch1@163.com
                Journal
                J Exp Clin Cancer Res
                J Exp Clin Cancer Res
                Journal of Experimental & Clinical Cancer Research : CR
                BioMed Central (London )
                0392-9078
                1756-9966
                6 April 2021
                6 April 2021
                2021
                : 40
                : 120
                Affiliations
                [1 ]GRID grid.411918.4, ISNI 0000 0004 1798 6427, Third Department of Breast Surgery, , Tianjin Medical University Cancer Institute and Hospital, ; Tianjin, China
                [2 ]National Clinical Research Center for Cancer, Tianjin, China
                [3 ]GRID grid.411918.4, ISNI 0000 0004 1798 6427, Key Laboratory of Cancer Prevention and Therapy, ; Tianjin, China
                [4 ]Clinical Research Center for Cancer, Tianjin, China
                Article
                1901
                10.1186/s13046-021-01901-1
                8022546
                33823894
                82657bcd-f5f7-4792-b76c-3910c440000d
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 16 December 2020
                : 7 March 2021
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 81502306
                Award ID: 81672623
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100010041, Tianjin Science and Technology Committee;
                Award ID: 19YFZCSY00030
                Categories
                Research
                Custom metadata
                © The Author(s) 2021

                Oncology & Radiotherapy
                chemotherapy-elicited exosomes,mir-378a-3p,mir-378d,chemotherapy resistance,cancer stemness

                Comments

                Comment on this article