19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Multivalent ligands to control stem cell behaviour in vitro and in vivo

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is broad interest in designing nanostructured materials that can interact with cells and regulate key downstream functions 17 . In particular, materials with nanoscale features may enable control over multivalent interactions, which involve the simultaneous binding of multiple ligands on one entity to multiple receptors on another and are ubiquitous throughout biology 810 . Cellular signal transduction of growth factor and morphogen cues that play critical roles in regulating cell function and fate often begins with such multivalent binding of ligands, either secreted or cell-surface tethered, to target cell receptors, leading to receptor clustering 1118 . Cellular mechanisms that orchestrate ligand-receptor oligomerisation are complex, however, and the capacity to control multivalent interactions and thereby modulate key signaling events within living systems is therefore currently very limited. Here we demonstrate the design of potent multivalent conjugates that can organise stem cell receptors into nanoscale clusters and control stem cell behaviour in vitro and in vivo. The ectodomain of ephrin-B2, normally an integral membrane protein ligand, was conjugated to a soluble biopolymer to yield multivalent nanoscale conjugates that potently induced signaling in neural stem cells and promoted their neuronal differentiation both in culture and within the brain. Super-resolution microscopy analysis yielded insights into the organisation of receptor-ligand clusters at the nanoscale. We also found that synthetic multivalent conjugates of ephrin-B1 strongly enhanced human embryonic and induced pluripotent stem cell differentiation into functional dopaminergic neurons. Multivalent bioconjugates thus represent powerful tools and potential nanoscale therapeutics for controlling the behaviour of target stem cells in vitro and in vivo.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          More hippocampal neurons in adult mice living in an enriched environment.

          Neurogenesis occurs in the dentate gyrus of the hippocampus throughout the life of a rodent, but the function of these new neurons and the mechanisms that regulate their birth are unknown. Here we show that significantly more new neurons exist in the dentate gyrus of mice exposed to an enriched environment compared with littermates housed in standard cages. We also show, using unbiased stereology, that the enriched mice have a larger hippocampal granule cell layer and 15 per cent more granule cell neurons in the dentate gyrus.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nanoparticle-mediated cellular response is size-dependent.

            Nanostructures of different sizes, shapes and material properties have many applications in biomedical imaging, clinical diagnostics and therapeutics. In spite of what has been achieved so far, a complete understanding of how cells interact with nanostructures of well-defined sizes, at the molecular level, remains poorly understood. Here we show that gold and silver nanoparticles coated with antibodies can regulate the process of membrane receptor internalization. The binding and activation of membrane receptors and subsequent protein expression strongly depend on nanoparticle size. Although all nanoparticles within the 2-100 nm size range were found to alter signalling processes essential for basic cell functions (including cell death), 40- and 50-nm nanoparticles demonstrated the greatest effect. These results show that nanoparticles should no longer be viewed as simple carriers for biomedical applications, but can also play an active role in mediating biological effects. The findings presented here may assist in the design of nanoscale delivery and therapeutic systems and provide insights into nanotoxicity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Direct stochastic optical reconstruction microscopy with standard fluorescent probes.

              Direct stochastic optical reconstruction microscopy (dSTORM) uses conventional fluorescent probes such as labeled antibodies or chemical tags for subdiffraction resolution fluorescence imaging with a lateral resolution of ∼20 nm. In contrast to photoactivated localization microscopy (PALM) with photoactivatable fluorescent proteins, dSTORM experiments start with bright fluorescent samples in which the fluorophores have to be transferred to a stable and reversible OFF state. The OFF state has a lifetime in the range of 100 milliseconds to several seconds after irradiation with light intensities low enough to ensure minimal photodestruction. Either spontaneously or photoinduced on irradiation with a second laser wavelength, a sparse subset of fluorophores is reactivated and their positions are precisely determined. Repetitive activation, localization and deactivation allow a temporal separation of spatially unresolved structures in a reconstructed image. Here we present a step-by-step protocol for dSTORM imaging in fixed and living cells on a wide-field fluorescence microscope, with standard fluorescent probes focusing especially on the photoinduced fine adjustment of the ratio of fluorophores residing in the ON and OFF states. Furthermore, we discuss labeling strategies, acquisition parameters, and temporal and spatial resolution. The ultimate step of data acquisition and data processing can be performed in seconds to minutes.
                Bookmark

                Author and article information

                Journal
                101283273
                34218
                Nat Nanotechnol
                Nat Nanotechnol
                Nature nanotechnology
                1748-3387
                1748-3395
                5 November 2013
                20 October 2013
                November 2013
                01 May 2014
                : 8
                : 11
                : 10.1038/nnano.2013.205
                Affiliations
                [1 ]Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California, USA
                [2 ]Department of Bioengineering, University of California Berkeley, Berkeley, California, USA
                [3 ]Department of Material Science and Engineering, University of California Berkeley, Berkeley, California, USA
                [4 ]Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
                Author notes
                Correspondence should be addressed to D.V.S. ( schaffer@ 123456berkeley.edu )
                Article
                NIHMS523927
                10.1038/nnano.2013.205
                3830932
                24141540
                82859b0b-c531-4480-90e2-0974fac0b5ff

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Funding
                Funded by: National Institute of Biomedical Imaging and Bioengineering : NIBIB
                Award ID: R21 EB007295 || EB
                Categories
                Article

                Nanotechnology
                Nanotechnology

                Comments

                Comment on this article