5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Best be(e) on low fat: linking nutrient perception, regulation and fitness

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Influence of Pollen Nutrition on Honey Bee Health: Do Pollen Quality and Diversity Matter?

          Honey bee colonies are highly dependent upon the availability of floral resources from which they get the nutrients (notably pollen) necessary to their development and survival. However, foraging areas are currently affected by the intensification of agriculture and landscape alteration. Bees are therefore confronted to disparities in time and space of floral resource abundance, type and diversity, which might provide inadequate nutrition and endanger colonies. The beneficial influence of pollen availability on bee health is well-established but whether quality and diversity of pollen diets can modify bee health remains largely unknown. We therefore tested the influence of pollen diet quality (different monofloral pollens) and diversity (polyfloral pollen diet) on the physiology of young nurse bees, which have a distinct nutritional physiology (e.g. hypopharyngeal gland development and vitellogenin level), and on the tolerance to the microsporidian parasite Nosema ceranae by measuring bee survival and the activity of different enzymes potentially involved in bee health and defense response (glutathione-S-transferase (detoxification), phenoloxidase (immunity) and alkaline phosphatase (metabolism)). We found that both nurse bee physiology and the tolerance to the parasite were affected by pollen quality. Pollen diet diversity had no effect on the nurse bee physiology and the survival of healthy bees. However, when parasitized, bees fed with the polyfloral blend lived longer than bees fed with monofloral pollens, excepted for the protein-richest monofloral pollen. Furthermore, the survival was positively correlated to alkaline phosphatase activity in healthy bees and to phenoloxydase activities in infected bees. Our results support the idea that both the quality and diversity (in a specific context) of pollen can shape bee physiology and might help to better understand the influence of agriculture and land-use intensification on bee nutrition and health.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Nutrition and health in honey bees

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Diet effects on honeybee immunocompetence.

              The maintenance of the immune system can be costly, and a lack of dietary protein can increase the susceptibility of organisms to disease. However, few studies have investigated the relationship between protein nutrition and immunity in insects. Here, we tested in honeybees (Apis mellifera) whether dietary protein quantity (monofloral pollen) and diet diversity (polyfloral pollen) can shape baseline immunocompetence (IC) by measuring parameters of individual immunity (haemocyte concentration, fat body content and phenoloxidase activity) and glucose oxidase (GOX) activity, which enables bees to sterilize colony and brood food, as a parameter of social immunity. Protein feeding modified both individual and social IC but increases in dietary protein quantity did not enhance IC. However, diet diversity increased IC levels. In particular, polyfloral diets induced higher GOX activity compared with monofloral diets, including protein-richer diets. These results suggest a link between protein nutrition and immunity in honeybees and underscore the critical role of resource availability on pollinator health.
                Bookmark

                Author and article information

                Journal
                Ecology Letters
                Ecol Lett
                Wiley
                1461-023X
                1461-0248
                January 13 2020
                March 2020
                January 13 2020
                March 2020
                : 23
                : 3
                : 545-554
                Affiliations
                [1 ]Department of Animal Ecology and Tropical Biology BiozentrumUniversity of Würzburg Am Hubland Würzburg Germany
                [2 ]Department of Ecology and Ecosystem Management TUM School of Life Sciences Technical University of Munich Freising Germany
                [3 ]The Charles Perkins Centre and School of Life and Environmental Sciences University of Sydney Sydney NSW Australia
                [4 ]Department of Behavioral Physiology and Sociobiology Biozentrum University of Würzburg Am Hubland Würzburg Germany
                Article
                10.1111/ele.13454
                31943632
                829b04f6-bd22-4028-8230-7d4fc59829a6
                © 2020

                http://creativecommons.org/licenses/by-nc/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article