0
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Hybrid combinatorial remanufacturing strategy for medical equipment in the pandemic

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The COVID-19 pandemic hit the medical supply chain, creating a serious shortage of medical equipment. To meet the urgent demand, one realistic way is to collect abandoned medical equipment and then remanufacture, where the disassembled modules are shared with all stock-keeping units (SKUs) to improve utilization. However, in an emergency, the equipment should be processed sequentially and immediately, which means the decision is short-sighted with limited information. We propose a hybrid combinatorial remanufacturing (HCR) strategy and develop two reinforcement learning frameworks based on Q-learning and double deep Q network to find the optimal recovery option. In the frameworks, we transform HCR problem into a maze exploration game and propose a rule of descending epsilon-greedy selection on reweighted valid actions (DeSoRVA) and Espertate knowledge dictionary to combine the cost-minimizing objective with human judgment and the global state of the problem. A real-time environment is further implemented where the quality status of the in-transit equipment is unknown. Numerical studies show that our algorithms can learn to save cost, and the larger scale of the problem is, the more cost-down can be achieved. Moreover, the sophisticated knowledge refined by Espertate is effective and robust, which can handle remanufacturing problems at different scales corresponding to the volatility of the pandemic.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Human-level control through deep reinforcement learning.

          The theory of reinforcement learning provides a normative account, deeply rooted in psychological and neuroscientific perspectives on animal behaviour, of how agents may optimize their control of an environment. To use reinforcement learning successfully in situations approaching real-world complexity, however, agents are confronted with a difficult task: they must derive efficient representations of the environment from high-dimensional sensory inputs, and use these to generalize past experience to new situations. Remarkably, humans and other animals seem to solve this problem through a harmonious combination of reinforcement learning and hierarchical sensory processing systems, the former evidenced by a wealth of neural data revealing notable parallels between the phasic signals emitted by dopaminergic neurons and temporal difference reinforcement learning algorithms. While reinforcement learning agents have achieved some successes in a variety of domains, their applicability has previously been limited to domains in which useful features can be handcrafted, or to domains with fully observed, low-dimensional state spaces. Here we use recent advances in training deep neural networks to develop a novel artificial agent, termed a deep Q-network, that can learn successful policies directly from high-dimensional sensory inputs using end-to-end reinforcement learning. We tested this agent on the challenging domain of classic Atari 2600 games. We demonstrate that the deep Q-network agent, receiving only the pixels and the game score as inputs, was able to surpass the performance of all previous algorithms and achieve a level comparable to that of a professional human games tester across a set of 49 games, using the same algorithm, network architecture and hyperparameters. This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Stochastic multi-carrier energy management in the smart islands using reinforcement learning and unscented transform

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Deep reinforcement learning based preventive maintenance policy for serial production lines

                Bookmark

                Author and article information

                Journal
                Comput Ind Eng
                Comput Ind Eng
                Computers & Industrial Engineering
                Elsevier Ltd.
                0360-8352
                1879-0550
                11 November 2022
                11 November 2022
                : 108811
                Affiliations
                [1]School of Economics and Management, Southeast University, Nanjing 211189, China
                Author notes
                [* ]Corresponding author.
                Article
                S0360-8352(22)00799-9 108811
                10.1016/j.cie.2022.108811
                9650261
                82bdc88e-1fcc-4d24-962c-5b3c0b65f1ec
                © 2022 Elsevier Ltd. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                Categories
                Article

                remanufacturing,recovery option,combinatorial optimization,reinforcement learning,real-time decision making

                Comments

                Comment on this article