21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Spectral Properties of (-)-Epigallocatechin 3-O-Gallate (EGCG) Fluorescence in Different Solvents: Dependence on Solvent Polarity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          (-)-Epigallocatechin 3- O-gallate (EGCG) a molecule found in green tea and known for a plethora of bioactive properties is an inhibitor of heat shock protein 90 (HSP90), a protein of interest as a target for cancer and neuroprotection. Determination of the spectral properties of EGCG fluorescence in environments similar to those of binding sites found in proteins provides an important tool to directly study protein-EGCG interactions. The goal of this study is to examine the spectral properties of EGCG fluorescence in an aqueous buffer (AB) at pH=7.0, acetonitrile (AN) (a polar aprotic solvent), dimethylsulfoxide (DMSO) (a polar aprotic solvent), and ethanol (EtOH) (a polar protic solvent). We demonstrate that EGCG is a highly fluorescent molecule when excited at approximately 275 nm with emission maxima between 350 and 400 nm depending on solvent. Another smaller excitation peak was found when EGCG is excited at approximately 235 nm with maximum emission between 340 and 400 nm. We found that the fluorescence intensity (FI) of EGCG in AB at pH=7.0 is significantly quenched, and that it is about 85 times higher in an aprotic solvent DMSO. The Stokes shifts of EGCG fluorescence were determined by solvent polarity. In addition, while the emission maxima of EGCG fluorescence in AB, DMSO, and EtOH follow the Lippert-Mataga equation, its fluorescence in AN points to non-specific solvent effects on EGCG fluorescence. We conclude that significant solvent-dependent changes in both fluorescence intensity and fluorescence emission shifts can be effectively used to distinguish EGCG in aqueous solutions from EGCG in environments of different polarity, and, thus, can be used to study specific EGCG binding to protein binding sites where the environment is often different from aqueous in terms of polarity.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants.

          The purpose of this investigation was to establish the relative antioxidant activities in vitro of the flavanolic polyphenols, the catechins, and catechin-gallate esters. The relative antioxidant potentials were measured against radicals generated in the aqueous phase and against propagating lipid peroxyl radicals. The results show that in the aqueous phase their order of effectiveness as radical scavengers is epicatechin gallate (ECG) > epigallocatechin gallate (EGCG) > epigallocatechin (EGC) > gallic acid (GA) > epicatechin congruent to catechin; against propagating lipid peroxyl radical species, epicatechin and catechin are as effective as ECG and EGCG, the least efficacious being EGC and GA. This is consistent with their relative abilities to protect against consumption of LDL alpha-tocopherol. The results are discussed in the context of the most relevant antioxidant constituents of green tea extracts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Wide distribution of [3H](-)-epigallocatechin gallate, a cancer preventive tea polyphenol, in mouse tissue.

            The increasing recognition of green tea and tea polyphenols as cancer preventives has created a need for a study of their bioavailability. For this purpose, we synthesized [3H] (-)-epigallocatechin gallate ([3H]EGCG) with a specific activity of 48.1 GBq/mmol and directly administered the solution into the stomachs of CD-1 female or male mice. Radioactivity in the digestive tract, various organs, blood, urine and feces was measured with an oxidizer at various times after administration and significant radioactivity was found in the previously reported target organs of EGCG and green tea extract (digestive tract, liver, lung, pancreas, mammary gland and skin), as well as other organs (brain, kidney, uterus and ovary and testes) in both sexes. Incorporation of radioactivity in the cells was confirmed by microautoradiography. Within 24 h, 6.6 (females) and 6.4% (males) of total administered radioactivity was excreted in the urine and 37.7 and 33.1% in feces. HPLC analysis of urine from both sexes revealed that 0.03-0.59% of administered [3H]EGCG, along with at least five metabolites, was excreted. In addition, we found that a second, equal administration to female mice after a 6 h interval enhanced tissue levels of radioactivity in blood, brain, liver, pancreas, bladder and bone 4-6 times above those after a single administration. These results suggest that frequent consumption of green tea enables the body to maintain a high level of tea polyphenols and this paper is the first pharmacological evidence of a wide distribution of [3H]EGCG in mouse organs, indicating a similar wide range of target organs for cancer prevention in humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hsp90 inhibitors as novel cancer chemotherapeutic agents.

              Heat shock protein 90 (Hsp90) is a molecular chaperone whose association is required for the stability and function of multiple mutated, chimeric and over-expressed signaling proteins that promote the growth and/or survival of cancer cells. Hsp90 client proteins include mutated p53, Bcr-Abl, Raf-1, Akt, ErbB2 and hypoxia-inducible factor 1 alpha (HIF-1 alpha). Hsp90 inhibitors, by interacting specifically with a single molecular target, cause the destabilization and eventual degradation of Hsp90 client proteins, and they have shown promising antitumor activity in preclinical model systems. One Hsp90 inhibitor, 17-allylaminogeldanamycin (17AAG), is currently in phase I clinical trial. Because of the chemoprotective activity of several proteins that are Hsp90 clients, the combination of an Hsp90 inhibitor with a standard chemotherapeutic agent could dramatically increase the in vivo efficacy of the therapeutic agent.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                22 November 2013
                : 8
                : 11
                : e79834
                Affiliations
                [1 ]Montclair State University, Department of Biology and Molecular Biology, Montclair, New Jersey, United States of America
                [2 ]Montclair State University, Department of Chemistry and Biochemistry, Montclair, New Jersey, United States of America
                [3 ]Margaret & Herman Sokol Institute for Pharmaceutical Life Sciences, Montclair, New Jersey, United States of America
                University of Quebec at Trois-Rivieres, Canada
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: VS. Performed the experiments: VS MNY RMSM. Analyzed the data: VS. Contributed reagents/materials/analysis tools: VS DPR.

                Article
                PONE-D-13-29926
                10.1371/journal.pone.0079834
                3838354
                82e6aa7f-f4e8-4a08-8d45-edae74e1c62a
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 22 July 2013
                : 4 October 2013
                Funding
                This work was supported by the Margaret and Herman Sokol Fellows Program to VS, and by the Sokol Endowment fund to DPR. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article