17
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Animal Welfare in Extensive Production Systems Is Still an Area of Concern

      ,
      Frontiers in Sustainable Food Systems
      Frontiers Media SA

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references224

          • Record: found
          • Abstract: not found
          • Book: not found

          Toxic Cyanobacteria in Water

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fear and fearfulness in animals.

            A Boissy (1995)
            Persistence of individual differences in animal behavior in reactions to various environmental challenges could reflect basic divergences in temperament, which might be used to predict details of adaptive response. Although studies have been carried out on fear and anxiety in various species, including laboratory, domestic and wild animals, no consistent definition of fearfulness as a basic trait of temperament has emerged. After a classification of the events that may produce a state of fear, this article describes the great variability in behavior and in physiological patterns generally associated with emotional reactivity. The difficulties of proposing fearfulness--the general capacity to react to a variety of potentially threatening situations--as a valid basic internal variable are then discussed. Although there are many studies showing covariation among the psychobiological responses to different environmental challenges, other studies find no such correlations and raise doubts about the interpretation of fearfulness as a basic personality trait. After a critical assessment of methodologies used in fear and anxiety studies, it is suggested that discrepancies among results are mainly due to the modulation of emotional responses in animals, which depend on numerous genetic and epigenetic factors. It is difficult to compare results obtained by different methods from animals reared under various conditions and with different genetic origins. The concept of fearfulness as an inner trait is best supported by two kinds of investigations. First, an experimental approach combining ethology and experimental psychology produces undeniable indicators of emotional reactivity. Second, genetic lines selected for psychobiological traits prove useful in establishing relationships between behavioral and neuroendocrine aspects of emotional reactivity. It is suggested that fearfulness could be considered a basic feature of the temperament of each individual, one that predisposes it to respond similarly to a variety of potentially alarming challenges, but is nevertheless continually modulated during development by the interaction of genetic traits of reactivity with environmental factors, particularly in the juvenile period. Such interaction may explain much of the interindividual variability observed in adaptive responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Adaptation to hot climate and strategies to alleviate heat stress in livestock production.

              Despite many challenges faced by animal producers, including environmental problems, diseases, economic pressure, and feed availability, it is still predicted that animal production in developing countries will continue to sustain the future growth of the world's meat production. In these areas, livestock performance is generally lower than those obtained in Western Europe and North America. Although many factors can be involved, climatic factors are among the first and crucial limiting factors of the development of animal production in warm regions. In addition, global warming will further accentuate heat stress-related problems. The objective of this paper was to review the effective strategies to alleviate heat stress in the context of tropical livestock production systems. These strategies can be classified into three groups: those increasing feed intake or decreasing metabolic heat production, those enhancing heat-loss capacities, and those involving genetic selection for heat tolerance. Under heat stress, improved production should be possible through modifications of diet composition that either promotes a higher intake or compensates the low feed consumption. In addition, altering feeding management such as a change in feeding time and/or frequency, are efficient tools to avoid excessive heat load and improve survival rate, especially in poultry. Methods to enhance heat exchange between the environment and the animal and those changing the environment to prevent or limit heat stress can be used to improve performance under hot climatic conditions. Although differences in thermal tolerance exist between livestock species (ruminants > monogastrics), there are also large differences between breeds of a species and within each breed. Consequently, the opportunity may exist to improve thermal tolerance of the animals using genetic tools. However, further research is required to quantify the genetic antagonism between adaptation and production traits to evaluate the potential selection response. With the development of molecular biotechnologies, new opportunities are available to characterize gene expression and identify key cellular responses to heat stress. These new tools will enable scientists to improve the accuracy and the efficiency of selection for heat tolerance. Epigenetic regulation of gene expression and thermal imprinting of the genome could also be an efficient method to improve thermal tolerance. Such techniques (e.g. perinatal heat acclimation) are currently being experimented in chicken.
                Bookmark

                Author and article information

                Journal
                Frontiers in Sustainable Food Systems
                Front. Sustain. Food Syst.
                Frontiers Media SA
                2571-581X
                September 22 2020
                September 22 2020
                : 4
                Article
                10.3389/fsufs.2020.545902
                82e702d4-59e9-4d42-b519-73b768a25b4d
                © 2020

                Free to read

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article