3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Coupled ripple oscillations between the medial temporal lobe and neocortex retrieve human memory

      , , ,
      Science
      American Association for the Advancement of Science (AAAS)

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Episodic memory retrieval relies on the recovery of neural representations of waking experience. This process is thought to involve a communication dynamic between the medial temporal lobe memory system and the neocortex. How this occurs is largely unknown, however, especially as it pertains to awake human memory retrieval. Using intracranial electroencephalographic recordings, we found that ripple oscillations were dynamically coupled between the human medial temporal lobe (MTL) and temporal association cortex. Coupled ripples were more pronounced during successful verbal memory retrieval and recover the cortical neural representations of remembered items. Together, these data provide direct evidence that coupled ripples between the MTL and association cortex may underlie successful memory retrieval in the human brain.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval.

          The hippocampus is required for the encoding, consolidation and retrieval of event memories. Although the neural mechanisms that underlie these processes are only partially understood, a series of recent papers point to awake memory replay as a potential contributor to both consolidation and retrieval. Replay is the sequential reactivation of hippocampal place cells that represent previously experienced behavioral trajectories and occurs frequently in the awake state, particularly during periods of relative immobility. Awake replay may reflect trajectories through either the current environment or previously visited environments that are spatially remote. The repetition of learned sequences on a compressed time scale is well suited to promote memory consolidation in distributed circuits beyond the hippocampus, suggesting that consolidation occurs in both the awake and sleeping animal. Moreover, sensory information can influence the content of awake replay, suggesting a role for awake replay in memory retrieval.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Awake hippocampal sharp-wave ripples support spatial memory.

            The hippocampus is critical for spatial learning and memory. Hippocampal neurons in awake animals exhibit place field activity that encodes current location, as well as sharp-wave ripple (SWR) activity during which representations based on past experiences are often replayed. The relationship between these patterns of activity and the memory functions of the hippocampus is poorly understood. We interrupted awake SWRs in animals learning a spatial alternation task. We observed a specific learning and performance deficit that persisted throughout training. This deficit was associated with awake SWR activity, as SWR interruption left place field activity and post-experience SWR reactivation intact. These results provide a link between awake SWRs and hippocampal memory processes, which suggests that awake replay of memory-related information during SWRs supports learning and memory-guided decision-making.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Communication between neocortex and hippocampus during sleep in rodents.

              Both neocortical and hippocampal networks organize the firing patterns of their neurons by prominent oscillations during sleep, but the functional role of these rhythms is not well understood. Here, we show a robust correlation of neuronal discharges between the somatosensory cortex and hippocampus on both slow and fine time scales in the mouse and rat. Neuronal bursts in deep cortical layers, associated with sleep spindles and delta waves/slow rhythm, effectively triggered hippocampal discharges related to fast (ripple) oscillations. We hypothesize that oscillation-mediated temporal links coordinate specific information transfer between neocortical and hippocampal cell assemblies. Such a neocortical-hippocampal interplay may be important for memory consolidation.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                February 28 2019
                March 01 2019
                February 28 2019
                March 01 2019
                : 363
                : 6430
                : 975-978
                Article
                10.1126/science.aau8956
                6478623
                30819961
                83397c62-b8fb-479f-9ccc-ae087d254cde
                © 2019

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                History

                Comments

                Comment on this article