26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fast-AT: Fast Automatic Thumbnail Generation using Deep Neural Networks

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fast-AT is an automatic thumbnail generation system based on deep neural networks. It is a fully-convolutional CNN, which learns specific filters for thumbnails of different sizes and aspect ratios. During inference, the appropriate filter is selected depending on the dimensions of the target thumbnail. Unlike most previous work, Fast-AT does not utilize saliency but addresses the problem directly. In addition, it eliminates the need to conduct region search on the saliency map. The model generalizes to thumbnails of different sizes including those with extreme aspect ratios and can generate thumbnails in real time. A data set of more than 70,000 thumbnail annotations was collected to train Fast-AT. We show competitive results in comparison to existing techniques.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          Measuring the objectness of image windows.

          We present a generic objectness measure, quantifying how likely it is for an image window to contain an object of any class. We explicitly train it to distinguish objects with a well-defined boundary in space, such as cows and telephones, from amorphous background elements, such as grass and road. The measure combines in a Bayesian framework several image cues measuring characteristics of objects, such as appearing different from their surroundings and having a closed boundary. These include an innovative cue to measure the closed boundary characteristic. In experiments on the challenging PASCAL VOC 07 dataset, we show this new cue to outperform a state-of-the-art saliency measure, and the combined objectness measure to perform better than any cue alone. We also compare to interest point operators, a HOG detector, and three recent works aiming at automatic object segmentation. Finally, we present two applications of objectness. In the first, we sample a small numberof windows according to their objectness probability and give an algorithm to employ them as location priors for modern class-specific object detectors. As we show experimentally, this greatly reduces the number of windows evaluated by the expensive class-specific model. In the second application, we use objectness as a complementary score in addition to the class-specific model, which leads to fewer false positives. As shown in several recent papers, objectness can act as a valuable focus of attention mechanism in many other applications operating on image windows, including weakly supervised learning of object categories, unsupervised pixelwise segmentation, and object tracking in video. Computing objectness is very efficient and takes only about 4 sec. per image.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The effects of a visual fidelity criterion of the encoding of images

              Bookmark
              • Record: found
              • Abstract: not found
              • Conference Proceedings: not found

              The MIR flickr retrieval evaluation

                Bookmark

                Author and article information

                Journal
                2016-12-14
                Article
                1612.04811
                835a1f69-2bdd-4279-bd55-dfc52c8e7c5e

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                cs.CV

                Computer vision & Pattern recognition
                Computer vision & Pattern recognition

                Comments

                Comment on this article