15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Empagliflozin, a sodium glucose co-transporter-2 inhibitor, alleviates atrial remodeling and improves mitochondrial function in high-fat diet/streptozotocin-induced diabetic rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Diabetes mellitus is an important risk factor for atrial fibrillation (AF) development. Sodium–glucose co-transporter-2 (SGLT-2) inhibitors are used for the treatment of type 2 diabetes mellitus (T2DM). Their cardioprotective effects have been reported but whether they prevent AF in T2DM patients are less well-explored. We tested the hypothesis that the SGLT-2 inhibitor, empagliflozin, can prevent atrial remodeling in a diabetic rat model.

          Methods

          High-fat diet and low-dose streptozotocin (STZ) treatment were used to induce T2DM. A total of 96 rats were randomized into the following four groups: (i) control (ii) T2DM, (iii) low-dose empagliflozin (10 mg/kg/day)/T2DM; and (iv) high-dose empagliflozin (30 mg/kg/day)/T2DM by the intragastric route for 8 weeks.

          Results

          Compared with the control group, left atrial diameter, interstitial fibrosis and the incidence of AF inducibility were significantly increased in the DM group. Moreover, atrial mitochondrial respiratory function, mitochondrial membrane potential, and mitochondrial biogenesis were impaired. Empagliflozin treatment significantly prevented the development of these abnormalities in DM rats, likely via the peroxisome proliferator-activated receptor-c coactivator 1α (PGC-1α)/nuclear respiratory factor-1 (NRF-1)/mitochondrial transcription factor A (Tfam) signaling pathway.

          Conclusions

          Empagliflozin can ameliorate atrial structural and electrical remodeling as well as improve mitochondrial function and mitochondrial biogenesis in T2DM, hence may be potentially used in the prevention of T2DM-related atrial fibrillation.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Empagliflozin decreases myocardial cytoplasmic Na + through inhibition of the cardiac Na + /H + exchanger in rats and rabbits

          Aims/hypothesis Empagliflozin (EMPA), an inhibitor of the renal sodium–glucose cotransporter (SGLT) 2, reduces the risk of cardiovascular death in patients with type 2 diabetes. The underlying mechanism of this effect is unknown. Elevated cardiac cytoplasmic Na+ ([Na+]c) and Ca2+ ([Ca2+]c) concentrations and decreased mitochondrial Ca2+ concentration ([Ca2+]m) are drivers of heart failure and cardiac death. We therefore hypothesised that EMPA would directly modify [Na+]c, [Ca2+]c and [Ca2+]m in cardiomyocytes. Methods [Na+]c, [Ca2+]c, [Ca 2+]m and Na+/H+ exchanger (NHE) activity were measured fluorometrically in isolated ventricular myocytes from rabbits and rats. Results An increase in extracellular glucose, from 5.5 mmol/l to 11 mmol/l, resulted in increased [Na+]c and [Ca2+]c levels. EMPA treatment directly inhibited NHE flux, caused a reduction in [Na+]c and [Ca2+]c and increased [Ca2+]m. After pretreatment with the NHE inhibitor, Cariporide, these effects of EMPA were strongly reduced. EMPA also affected [Na+]c and NHE flux in the absence of extracellular glucose. Conclusions/interpretation The glucose lowering kidney-targeted agent, EMPA, demonstrates direct cardiac effects by lowering myocardial [Na+]c and [Ca2+]c and enhancing [Ca2+]m, through impairment of myocardial NHE flux, independent of SGLT2 activity. Electronic supplementary material The online version of this article (doi:10.1007/s00125-016-4134-x) contains peer-reviewed but unedited supplementary material, which is available to authorised users.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Characterization of High-Fat Diet and Multiple Low-Dose Streptozotocin Induced Type 2 Diabetes Rat Model

            Aim. Based on the previously established method, we developed a better and stable animal model of type 2 diabetes mellitus by high-fat diet combined with multiple low-dose STZ injections. Meanwhile, this new model was used to evaluate the antidiabetic effect of berberine. Method. Wistar male rats fed with regular chow for 4 weeks received vehicle (control groups), rats fed with high-fat diet for 4 weeks received different amounts of STZ once or twice by intraperitoneal injection (diabetic model groups), and diabetic rats were treated with berberine (100 mg/kg, berberine treatment group). Intraperitoneal glucose tolerance test and insulin tolerance test were carried out. Moreover, fasting blood glucose, fasting insulin, total cholesterol, and triglyceride were measured to evaluate the dynamic blood sugar and lipid metabolism. Result. The highest successful rate (100%) was observed in rats treated with a single injection of 45 mg/kg STZ, but the plasma insulin level of this particular group was significantly decreased, and ISI has no difference compared to control group. The successful rate of 30 mg/kg STZ twice injection group was significantly high (85%) and the rats in this group presented a typical characteristic of T2DM as insulin resistance, hyperglycemia, and blood lipid disorder. All these symptoms observed in the 30 mg/kg STZ twice injection group were recovered by the treatment of berberine. Conclusion. Together, these results indicated that high-fat diet combined with multiple low doses of STZ (30 mg/kg at weekly intervals for 2 weeks) proved to be a better way for developing a stable animal model of type 2 diabetes, and this new model may be suitable for pharmaceutical screening.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mitochondrial dysfunction in cardiac disease: ischemia--reperfusion, aging, and heart failure.

              Mitochondria contribute to cardiac dysfunction and myocyte injury via a loss of metabolic capacity and by the production and release of toxic products. This article discusses aspects of mitochondrial structure and metabolism that are pertinent to the role of mitochondria in cardiac disease. Generalized mechanisms of mitochondrial-derived myocyte injury are also discussed, as are the strengths and weaknesses of experimental models used to study the contribution of mitochondria to cardiac injury. Finally, the involvement of mitochondria in the pathogenesis of specific cardiac disease states (ischemia, reperfusion, aging, ischemic preconditioning, and cardiomyopathy) is addressed. Copyright 2001 Academic Press.
                Bookmark

                Author and article information

                Contributors
                tic_tjcardiol@126.com
                liutongdoc@126.com
                Journal
                Cardiovasc Diabetol
                Cardiovasc Diabetol
                Cardiovascular Diabetology
                BioMed Central (London )
                1475-2840
                28 November 2019
                28 November 2019
                2019
                : 18
                : 165
                Affiliations
                [1 ]ISNI 0000 0004 1798 6160, GRID grid.412648.d, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, , Second Hospital of Tianjin Medical University, ; Tianjin, 300211 People’s Republic of China
                [2 ]Laboratory of Cardiovascular Physiology, Li Ka Shing Institute of Health Sciences, Sha Tin, Hong Kong S.A.R., China
                [3 ]ISNI 0000 0004 0372 3343, GRID grid.9654.e, Auckland Bioengineering Institute, , The University of Auckland, ; Auckland, New Zealand
                [4 ]ISNI 0000 0004 1761 2484, GRID grid.33763.32, Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Department of Health & Exercise Science, , Tianjin University of Sport, ; Tianjin, 300381 People’s Republic of China
                Author information
                http://orcid.org/0000-0003-0482-0738
                Article
                964
                10.1186/s12933-019-0964-4
                6882319
                31779619
                83c3c964-e9a1-478b-b6af-4c2c60da1cc1
                © The Author(s) 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 12 June 2019
                : 10 November 2019
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 81570298
                Award ID: 81970270
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100006606, Natural Science Foundation of Tianjin City;
                Award ID: 16JCZDJC34900
                Award Recipient :
                Categories
                Original Investigation
                Custom metadata
                © The Author(s) 2019

                Endocrinology & Diabetes
                atrial fibrillation,empagliflozin,sglt-2 inhibitor,atrial remodeling,mitochondrial function,diabetic rats

                Comments

                Comment on this article