+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Movement priming of EEG/MEG brain responses for action-words characterizes the link between language and action

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Activation in sensorimotor areas of the brain following perception of linguistic stimuli referring to objects and actions has been interpreted as evidence for strong theories of embodied semantics. Although a large number of studies have demonstrated this “language-to-action” link, important questions about how activation in the sensorimotor system affects language performance (“action-to-language” link) are yet unanswered. As several authors have recently pointed out, the debate should move away from an “embodied or not” focus, and rather aim to characterize the functional contributions of sensorimotor systems to language processing in more detail. For this purpose, we here introduce a novel movement priming paradigm in combination with electro- and magnetoencephalography (EEG/MEG), which allows investigating effects of motor cortex pre-activation on the spatio-temporal dynamics of action-word evoked brain activation. Participants initiated experimental trials by either finger- or foot-movements before executing a two alternative forced choice task employing action-words. We found differential brain activation during the early stages of subsequent hand- and leg-related word processing, respectively, albeit in the absence of behavioral effects. Distributed source estimation based on combined EEG/MEG measurements revealed that congruency effects between effector type used for response initiation (hand or foot) and action-word category (hand- or foot-related) occurred not only in motor cortex, but also in a classical language comprehension area, posterior superior temporal cortex, already 150 msec after the visual presentation of the word stimulus. This suggests that pre-activation of hand- and leg-motor networks may differentially facilitate the ignition of semantic cell assemblies for hand- and leg-related words, respectively. Our results demonstrate the usefulness of movement priming in combination with neuroimaging to functionally characterize the link between language and sensorimotor systems.

          Related collections

          Most cited references 73

          • Record: found
          • Abstract: found
          • Article: not found

          Using confidence intervals in within-subject designs.

          We argue that to best comprehend many data sets, plotting judiciously selected sample statistics with associated confidence intervals can usefully supplement, or even replace, standard hypothesis-testing procedures. We note that most social science statistics textbooks limit discussion of confidence intervals to their use in between-subject designs. Our central purpose in this article is to describe how to compute an analogous confidence interval that can be used in within-subject designs. This confidence interval rests on the reasoning that because between-subject variance typically plays no role in statistical analyses of within-subject designs, it can legitimately be ignored; hence, an appropriate confidence interval can be based on the standard within-subject error term-that is, on the variability due to the subject × condition interaction. Computation of such a confidence interval is simple and is embodied in Equation 2 on p. 482 of this article. This confidence interval has two useful properties. First, it is based on the same error term as is the corresponding analysis of variance, and hence leads to comparable conclusions. Second, it is related by a known factor (√2) to a confidence interval of the difference between sample means; accordingly, it can be used to infer the faith one can put in some pattern of sample means as a reflection of the underlying pattern of population means. These two properties correspond to analogous properties of the more widely used between-subject confidence interval.
            • Record: found
            • Abstract: found
            • Article: not found

            Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing.

            The advent of functional neuroimaging has allowed tremendous advances in our understanding of brain-language relationships, in addition to generating substantial empirical data on this subject in the form of thousands of activation peak coordinates reported in a decade of language studies. We performed a large-scale meta-analysis of this literature, aimed at defining the composition of the phonological, semantic, and sentence processing networks in the frontal, temporal, and inferior parietal regions of the left cerebral hemisphere. For each of these language components, activation peaks issued from relevant component-specific contrasts were submitted to a spatial clustering algorithm, which gathered activation peaks on the basis of their relative distance in the MNI space. From a sample of 730 activation peaks extracted from 129 scientific reports selected among 260, we isolated 30 activation clusters, defining the functional fields constituting three distributed networks of frontal and temporal areas and revealing the functional organization of the left hemisphere for language. The functional role of each activation cluster is discussed based on the nature of the tasks in which it was involved. This meta-analysis sheds light on several contemporary issues, notably on the fine-scale functional architecture of the inferior frontal gyrus for phonological and semantic processing, the evidence for an elementary audio-motor loop involved in both comprehension and production of syllables including the primary auditory areas and the motor mouth area, evidence of areas of overlap between phonological and semantic processing, in particular at the location of the selective human voice area that was the seat of partial overlap of the three language components, the evidence of a cortical area in the pars opercularis of the inferior frontal gyrus dedicated to syntactic processing and in the posterior part of the superior temporal gyrus a region selectively activated by sentence and text processing, and the hypothesis that different working memory perception-actions loops are identifiable for the different language components. These results argue for large-scale architecture networks rather than modular organization of language in the left hemisphere.
              • Record: found
              • Abstract: found
              • Article: not found

              Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements.

               J Simola,  S Taulu (2006)
              Limitations of traditional magnetoencephalography (MEG) exclude some important patient groups from MEG examinations, such as epilepsy patients with a vagus nerve stimulator, patients with magnetic particles on the head or having magnetic dental materials that cause severe movement-related artefact signals. Conventional interference rejection methods are not able to remove the artefacts originating this close to the MEG sensor array. For example, the reference array method is unable to suppress interference generated by sources closer to the sensors than the reference array, about 20-40 cm. The spatiotemporal signal space separation method proposed in this paper recognizes and removes both external interference and the artefacts produced by these nearby sources, even on the scalp. First, the basic separation into brain-related and external interference signals is accomplished with signal space separation based on sensor geometry and Maxwell's equations only. After this, the artefacts from nearby sources are extracted by a simple statistical analysis in the time domain, and projected out. Practical examples with artificial current dipoles and interference sources as well as data from real patients demonstrate that the method removes the artefacts without altering the field patterns of the brain signals.

                Author and article information

                Cortex; a Journal Devoted to the Study of the Nervous System and Behavior
                1 January 2016
                January 2016
                : 74
                : 262-276
                [a ]Medical Research Council Cognition and Brain Sciences Unit, Cambridge, UK
                [b ]University of York, Department of Psychology, York, UK
                [c ]Institute for Advanced Biomedical Technologies, G D'Annunzio University, Chieti, Italy
                [d ]Brain Language Laboratory, Department of Philosophy, Freie Universität Berlin, Germany
                Author notes
                [] Corresponding author. MRC Cognition and Brain Sciences Unit, 15 Chaucer Road, Cambridge CB2 7EF, UK. olaf.hauk@
                © 2015 The Authors

                This is an open access article under the CC BY license (

                Research Report


                motor cortex, embodiment, semantics, semantic somatotopy, word recognition


                Comment on this article