Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
7
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Acute Kidney Injury in Pediatric Acute SARS-CoV-2 Infection and Multisystem Inflammatory Syndrome in Children (MIS-C): Is There a Difference?

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective: To evaluate the prevalence and factors associated with the risk of acute kidney injury (AKI) in pediatric patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and multisystem inflammatory syndrome in children (MIS-C).

          Study Design: We performed a retrospective chart review of 113 patients with SARS-CoV-2 infection with or without MIS-C admitted at Children's Hospital of Michigan (CHM) from March to August 2020. Patient demographic details, laboratory data, imaging studies, echocardiography reports, and treatment data were collected.

          Results: Of the 92 patients included in the final analysis, 22 (24%) developed AKI with 8/22 (36%) developing stage 3 AKI. The prevalence of AKI was much higher in patients with MIS-C 15/28 (54%) vs. those with acute SARS-CoV-2 infection 7/64 (11%), ( p < 0.001). Overall, when compared to patients without AKI, patients with AKI were older in age (11 vs. 6.5 years, p = 0.007), African American (86 vs. 58%, p = 0.028), had MIS-C diagnosis (68 vs. 19%, p < 0.001), required ICU admission (91 vs. 20%, p < 0.001), had cardiac dysfunction (63 vs. 16%, p < 0.001), required inotropic support (59 vs. 6%, p < 0.001) and had a greater elevation in inflammatory markers. In a multivariate analysis, requirement of inotropes [Odds Ratio (OR)−22.8, p < 0.001], African American race (OR-8.8, p = 0.023) and MIS-C diagnosis (OR-5.3, p = 0.013) were the most significant predictors for AKI. All patients had recovery of kidney function, and none required kidney replacement therapy.

          Conclusion: Children with acute SARS-CoV-2 infection and MIS-C are at risk for AKI, with the risk being significantly greater with MIS-C. The pathogenesis of AKI in acute SARS-CoV-2 infection appears to be a combination of both renal hypo-perfusion and direct renal parenchymal damage whereas in MIS-C, the renal injury appears to be predominantly pre-renal from cardiac dysfunction and capillary leak from a hyperinflammatory state. These factors should be considered by clinicians caring for these children with a special focus on renal protective strategies to aid in recovery and prevent additional injury to this high-risk subgroup.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Multisystem Inflammatory Syndrome in U.S. Children and Adolescents

          Abstract Background Understanding the epidemiology and clinical course of multisystem inflammatory syndrome in children (MIS-C) and its temporal association with coronavirus disease 2019 (Covid-19) is important, given the clinical and public health implications of the syndrome. Methods We conducted targeted surveillance for MIS-C from March 15 to May 20, 2020, in pediatric health centers across the United States. The case definition included six criteria: serious illness leading to hospitalization, an age of less than 21 years, fever that lasted for at least 24 hours, laboratory evidence of inflammation, multisystem organ involvement, and evidence of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) based on reverse-transcriptase polymerase chain reaction (RT-PCR), antibody testing, or exposure to persons with Covid-19 in the past month. Clinicians abstracted the data onto standardized forms. Results We report on 186 patients with MIS-C in 26 states. The median age was 8.3 years, 115 patients (62%) were male, 135 (73%) had previously been healthy, 131 (70%) were positive for SARS-CoV-2 by RT-PCR or antibody testing, and 164 (88%) were hospitalized after April 16, 2020. Organ-system involvement included the gastrointestinal system in 171 patients (92%), cardiovascular in 149 (80%), hematologic in 142 (76%), mucocutaneous in 137 (74%), and respiratory in 131 (70%). The median duration of hospitalization was 7 days (interquartile range, 4 to 10); 148 patients (80%) received intensive care, 37 (20%) received mechanical ventilation, 90 (48%) received vasoactive support, and 4 (2%) died. Coronary-artery aneurysms (z scores ≥2.5) were documented in 15 patients (8%), and Kawasaki’s disease–like features were documented in 74 (40%). Most patients (171 [92%]) had elevations in at least four biomarkers indicating inflammation. The use of immunomodulating therapies was common: intravenous immune globulin was used in 144 (77%), glucocorticoids in 91 (49%), and interleukin-6 or 1RA inhibitors in 38 (20%). Conclusions Multisystem inflammatory syndrome in children associated with SARS-CoV-2 led to serious and life-threatening illness in previously healthy children and adolescents. (Funded by the Centers for Disease Control and Prevention.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multiorgan and Renal Tropism of SARS-CoV-2

            To the Editor: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) preferentially infects cells in the respiratory tract, 1,2 but its direct affinity for organs other than the lungs remains poorly defined. Here, we present data from an autopsy series of 27 patients (see the clinical data in Table S1 in the Supplementary Appendix, available with the full text of this letter at NEJM.org) that show that SARS-CoV-2 can be detected in multiple organs, including the lungs, pharynx, heart, liver, brain, and kidneys. We first quantified the SARS-CoV-2 viral load in autopsy tissue samples obtained from 22 patients who had died from Covid-19. Seventeen patients (77%) had more than two coexisting conditions (Figure 1A), and a greater number of coexisting conditions was associated with SARS-CoV-2 tropism for the kidneys (Table S2), even in patients without a history of chronic kidney disease (Table S3). The highest levels of SARS-CoV-2 copies per cell were detected in the respiratory tract, and lower levels were detected the kidneys, liver, heart, brain, and blood (Figure 1B). These findings indicate a broad organotropism of SARS-CoV-2. Since the kidneys are among the most common targets of SARS-CoV-2, we performed in silico analysis of publicly available data sets of single-cell RNA sequencing. This analysis revealed that RNA for angiotensin-converting enzyme 2 (ACE2), transmembrane serine protease 2 (TMPRSS2), and cathepsin L (CTSL) — RNA of genes that are considered to facilitate SARS-CoV-2 infection 3 — is enriched in multiple kidney-cell types from fetal development through adulthood (Fig. S1). This enrichment may facilitate SARS-CoV-2–associated kidney injury, as previously suggested. 4 We also quantified the SARS-CoV-2 viral load in precisely defined kidney compartments obtained with the use of tissue microdissection from 6 patients who underwent autopsy (1 patient who was included in the previously mentioned 22 patients as an internal negative control, plus 5 additional patients). Three of these 6 patients had a detectable SARS-CoV-2 viral load in all kidney compartments examined, with preferential targeting of glomerular cells (Fig. S2). We also detected viral RNA and protein with high spatial resolution using in situ hybridization and indirect immunofluorescence with confocal microscopy (Figure 1C). Data on additional controls are provided in Figures S3 and S4. On the basis of these findings, renal tropism is a potential explanation of commonly reported new clinical signs of kidney injury in patients with Covid-19, 5 even in patients with SARS-CoV-2 infection who are not critically ill. Our results indicate that SARS-CoV-2 has an organotropism beyond the respiratory tract, including the kidneys, liver, heart, and brain, and we speculate that organotropism influences the course of Covid-19 disease and, possibly, aggravates preexisting conditions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China

              Although the respiratory and immune systems are the major targets of Coronavirus Disease 2019 (COVID-19), acute kidney injury and proteinuria have also been observed. Currently, detailed pathologic examination of kidney damage in critically ill patients with COVID-19 has been lacking. To help define this we analyzed kidney abnormalities in 26 autopsies of patients with COVID-19 by light microscopy, ultrastructural observation and immunostaining. Patients were on average 69 years (19 male and 7 female) with respiratory failure associated with multiple organ dysfunction syndrome as the cause of death. Nine of the 26 showed clinical signs of kidney injury that included increased serum creatinine and/or new-onset proteinuria. By light microscopy, diffuse proximal tubule injury with the loss of brush border, non-isometric vacuolar degeneration, and even frank necrosis was observed. Occasional hemosiderin granules and pigmented casts were identified. There were prominent erythrocyte aggregates obstructing the lumen of capillaries without platelet or fibrinoid material. Evidence of vasculitis, interstitial inflammation or hemorrhage was absent. Electron microscopic examination showed clusters of coronavirus particles with distinctive spikes in the tubular epithelium and podocytes. Furthermore, the receptor of SARS-CoV-2, ACE2 was found to be upregulated in patients with COVID-19, and immunostaining with SARS-CoV nucleoprotein antibody was positive in tubules. In addition to the direct virulence of SARS-CoV-2, factors contributing to acute kidney injury included systemic hypoxia, abnormal coagulation, and possible drug or hyperventilation-relevant rhabdomyolysis. Thus, our studies provide direct evidence of the invasion of SARSCoV-2 into kidney tissue. These findings will greatly add to the current understanding of SARS-CoV-2 infection.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pediatr
                Front Pediatr
                Front. Pediatr.
                Frontiers in Pediatrics
                Frontiers Media S.A.
                2296-2360
                09 August 2021
                2021
                09 August 2021
                : 9
                : 692256
                Affiliations
                [1] 1Division of Nephrology and Hypertension, Department of Pediatrics, Children's Hospital of Michigan , Detroit, MI, United States
                [2] 2Department of Pediatrics, Central Michigan University College of Medicine , Mount Pleasant, MI, United States
                [3] 3Division of Critical Care, Department of Pediatrics, Children's Hospital of Michigan , Detroit, MI, United States
                [4] 4Division of Pediatric Infectious Diseases, Department of Pediatrics, Children's Hospital of Michigan , Detroit, MI, United States
                [5] 5Department of Pediatrics, Wayne State University School of Medicine , Detroit, MI, United States
                Author notes

                Edited by: Sidharth Kumar Sethi, Medanta the Medicity Hospital, India

                Reviewed by: Rupesh Raina, Akron Children's Hospital, United States; Julie Fitzgerald, Children's Hospital of Philadelphia, United States; Rajit Kumar Basu, Children's Healthcare of Atlanta at Egleston, United States

                *Correspondence: Rudolph P. Valentini rvalenti@ 123456dmc.org

                This article was submitted to Pediatric Nephrology, a section of the journal Frontiers in Pediatrics

                Article
                10.3389/fped.2021.692256
                8380850
                34434905
                84490028-6398-45b2-958d-f08157894e91
                Copyright © 2021 Grewal, Gregory, Jain, Mohammad, Cashen, Ang, Thomas and Valentini.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 08 April 2021
                : 14 July 2021
                Page count
                Figures: 3, Tables: 4, Equations: 0, References: 23, Pages: 10, Words: 6849
                Categories
                Pediatrics
                Original Research

                covid-19,multisystem inflammatory syndrome in children,risk factors,acute kidney injury,pathophysiology

                Comments

                Comment on this article