5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Augmented Renal Clearance in Severe Infections—An Important Consideration in Vancomycin Dosing: A Narrative Review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vancomycin is a hydrophilic antibiotic widely used in severe infections, including bacteremia and central nervous system (CNS) infections caused by Gram-positive bacteria such as methicillin-resistant Staphylococcus aureus (MRSA), coagulase-negative staphylococci and enterococci. Appropriate antimicrobial dosage regimens can help achieve the target exposure and improve clinical outcomes. However, vancomycin exposure in serum and cerebrospinal fluid (CSF) is challenging to predict due to rapidly changing pathophysiological processes and patient-specific factors. Vancomycin concentrations may be decreased for peripheral infections due to augmented renal clearance (ARC) and increased distribution caused by systemic inflammatory response syndrome (SIRS), increased capillary permeability, and aggressive fluid resuscitation. Additionally, few studies on vancomycin’s pharmacokinetics (PK) in CSF for CNS infections. The relationship between exposure and clinical response is unclear, challenging for adequate antimicrobial therapy. Accurate prediction of vancomycin pharmacokinetics/pharmacodynamics (PK/PD) in patients with high interindividual variation is critical to increase the likelihood of achieving therapeutic targets. In this review, we describe the interaction between ARC and vancomycin PK/PD, patient-specific factors that influence the achievement of target exposure, and recent advances in optimizing vancomycin dosing schedules for severe infective patients with ARC.

          Related collections

          Most cited references96

          • Record: found
          • Abstract: not found
          • Article: not found

          KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Subtherapeutic initial β-lactam concentrations in select critically ill patients: association between augmented renal clearance and low trough drug concentrations.

            β-Lactams are routinely used as empirical therapy in critical illness, with extended concentrations above the minimum inhibitory concentration (MIC) of the infecting organism required for effective treatment. Changes in renal function in this setting can significantly impact the probability of achieving such targets. Analysis was made of trough plasma drug concentrations obtained via therapeutic drug monitoring, compared with renal function, in critically ill patients receiving empirical β-lactam therapy. Drug concentrations were measured by means of high-performance liquid chromatography and corrected for protein binding. Therapeutic levels were defined as greater than or equal to MIC and greater than or equal to four times MIC (maximum bacterial eradication), respectively. Renal function was assessed by means of an 8-h creatinine clearance (CLCR). Fifty-two concurrent trough concentrations and CLCR measures were used in analysis. Piperacillin was the most frequent β-lactam prescribed (48%), whereas empirical cover and Staphylococcus species were the most common indications for therapy (62%). Most patients were mechanically ventilated on the day of study (85%), although only 25% were receiving vasopressors. In only 58% (n = 30) was the trough drug concentration greater than or equal to MIC, falling to 31% (n = 16) when using four times MIC as the target. CLCR values ≥ 130 mL/min/1.73 m2 were associated with trough concentrations less than MIC in 82% (P < .001) and less than four times MIC in 72% (P < .001). CLCR remained a significant predictor of subtherapeutic concentrations in multivariate analysis. Elevated CLCR appears to be an important predictor of subtherapeutic β-lactam concentrations and suggests an important role in identifying such patients in the ICU.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Are vancomycin trough concentrations adequate for optimal dosing?

              The current vancomycin therapeutic guidelines recommend the use of only trough concentrations to manage the dosing of adults with Staphylococcus aureus infections. Both vancomycin efficacy and toxicity are likely to be related to the area under the plasma concentration-time curve (AUC). We assembled richly sampled vancomycin pharmacokinetic data from three studies comprising 47 adults with various levels of renal function. With Pmetrics, the nonparametric population modeling package for R, we compared AUCs estimated from models derived from trough-only and peak-trough depleted versions of the full data set and characterized the relationship between the vancomycin trough concentration and AUC. The trough-only and peak-trough depleted data sets underestimated the true AUCs compared to the full model by a mean (95% confidence interval) of 23% (11 to 33%; P = 0.0001) and 14% (7 to 19%; P < 0.0001), respectively. In contrast, using the full model as a Bayesian prior with trough-only data allowed 97% (93 to 102%; P = 0.23) accurate AUC estimation. On the basis of 5,000 profiles simulated from the full model, among adults with normal renal function and a therapeutic AUC of ≥400 mg · h/liter for an organism for which the vancomycin MIC is 1 mg/liter, approximately 60% are expected to have a trough concentration below the suggested minimum target of 15 mg/liter for serious infections, which could result in needlessly increased doses and a risk of toxicity. Our data indicate that adjustment of vancomycin doses on the basis of trough concentrations without a Bayesian tool results in poor achievement of maximally safe and effective drug exposures in plasma and that many adults can have an adequate vancomycin AUC with a trough concentration of <15 mg/liter.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                21 March 2022
                2022
                : 13
                : 835557
                Affiliations
                [1] 1 Department of Neurology , Second Xiangya Hospital , Central South University , Changsha, China
                [2] 2 Department of Pharmacy , Second Xiangya Hospital , Central South University , Changsha, China
                Author notes

                Edited by: Yurong Lai, Gilead, United States

                Reviewed by: Juan He, Shanghai Jiao Tong University, China

                Mainul Haque, National Defence University of Malaysia, Malaysia

                Raja Ahsan Aftab, Taylor’s University, Malaysia

                *Correspondence: Hainan Zhang, hainanzhang@ 123456csu.edu.cn ; Xiaomei Wu, wuxiaomei0923@ 123456csu.edu.cn

                This article was submitted to Drugs Outcomes Research and Policies, a section of the journal Frontiers in Pharmacology

                Article
                835557
                10.3389/fphar.2022.835557
                8979486
                844c644f-5149-4536-9344-500a0d942353
                Copyright © 2022 Xiao, Zhang, Wu, Qu, Qin and Wang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 December 2021
                : 25 February 2022
                Categories
                Pharmacology
                Review

                Pharmacology & Pharmaceutical medicine
                vancomycin,critically ill,infection,augmented renal clearance,pharmacokinetics/pharmacodynamics

                Comments

                Comment on this article