7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Review of the Default Mode Network in Autism Spectrum Disorders and Attention Deficit Hyperactivity Disorder

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Functional magnetic resonance imaging (fMRI) has been widely used to examine the relationships between brain function and phenotypic features in neurodevelopmental disorders. Techniques such as resting-state functional connectivity (FC) have enabled the identification of the primary networks of the brain. One fMRI network, in particular, the default mode network (DMN), has been implicated in social-cognitive deficits in autism spectrum disorders (ASD) and attentional deficits in attention deficit hyperactivity disorder (ADHD). Given the significant clinical and genetic overlap between ASD and ADHD, surprisingly, no reviews have compared the clinical, developmental, and genetic correlates of DMN in ASD and ADHD and here we address this knowledge gap. We find that, compared with matched controls, ASD studies show a mixed pattern of both stronger and weaker FC in the DMN and ADHD studies mostly show stronger FC. Factors such as age, intelligence quotient, medication status, and heredity affect DMN FC in both ASD and ADHD. We also note that most DMN studies make ASD versus ADHD group comparisons and fail to consider ASD+ADHD comorbidity. We conclude, by identifying areas for improvement and by discussing the importance of using transdiagnostic approaches such as the Research Domain Criteria (RDoC) to fully account for the phenotypic and genotypic heterogeneity and overlap of ASD and ADHD.

          Impact statement

          In this work, we review the default mode network in autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD), as well as comorbid ASD+ADHD literature. Such a review has not been constructed in the field of cognitive neuroscience at this time, and it would greatly aid other behavioral and cognitive neuroscientists in identifying gaps in the field. In addition, the need to consider disorders to be on a continuum, as suggested by the Research Domain Criteria (RDoC), is important while identifying abnormal patterns in resting-state functional connectivity. This timely review will impact the field in a meaningful way, such that more research on the overlaps between ASD and ADHD is conducted along a spectrum.

          Related collections

          Most cited references89

          • Record: found
          • Abstract: found
          • Article: not found

          Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion.

          Here, we demonstrate that subject motion produces substantial changes in the timecourses of resting state functional connectivity MRI (rs-fcMRI) data despite compensatory spatial registration and regression of motion estimates from the data. These changes cause systematic but spurious correlation structures throughout the brain. Specifically, many long-distance correlations are decreased by subject motion, whereas many short-distance correlations are increased. These changes in rs-fcMRI correlations do not arise from, nor are they adequately countered by, some common functional connectivity processing steps. Two indices of data quality are proposed, and a simple method to reduce motion-related effects in rs-fcMRI analyses is demonstrated that should be flexibly implementable across a variety of software platforms. We demonstrate how application of this technique impacts our own data, modifying previous conclusions about brain development. These results suggest the need for greater care in dealing with subject motion, and the need to critically revisit previous rs-fcMRI work that may not have adequately controlled for effects of transient subject movements. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A default mode of brain function.

            A baseline or control state is fundamental to the understanding of most complex systems. Defining a baseline state in the human brain, arguably our most complex system, poses a particular challenge. Many suspect that left unconstrained, its activity will vary unpredictably. Despite this prediction we identify a baseline state of the normal adult human brain in terms of the brain oxygen extraction fraction or OEF. The OEF is defined as the ratio of oxygen used by the brain to oxygen delivered by flowing blood and is remarkably uniform in the awake but resting state (e.g., lying quietly with eyes closed). Local deviations in the OEF represent the physiological basis of signals of changes in neuronal activity obtained with functional MRI during a wide variety of human behaviors. We used quantitative metabolic and circulatory measurements from positron-emission tomography to obtain the OEF regionally throughout the brain. Areas of activation were conspicuous by their absence. All significant deviations from the mean hemisphere OEF were increases, signifying deactivations, and resided almost exclusively in the visual system. Defining the baseline state of an area in this manner attaches meaning to a group of areas that consistently exhibit decreases from this baseline, during a wide variety of goal-directed behaviors monitored with positron-emission tomography and functional MRI. These decreases suggest the existence of an organized, baseline default mode of brain function that is suspended during specific goal-directed behaviors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functional connectivity in the motor cortex of resting human brain using echo-planar MRI.

              An MRI time course of 512 echo-planar images (EPI) in resting human brain obtained every 250 ms reveals fluctuations in signal intensity in each pixel that have a physiologic origin. Regions of the sensorimotor cortex that were activated secondary to hand movement were identified using functional MRI methodology (FMRI). Time courses of low frequency (< 0.1 Hz) fluctuations in resting brain were observed to have a high degree of temporal correlation (P < 10(-3)) within these regions and also with time courses in several other regions that can be associated with motor function. It is concluded that correlation of low frequency fluctuations, which may arise from fluctuations in blood oxygenation or flow, is a manifestation of functional connectivity of the brain.
                Bookmark

                Author and article information

                Journal
                Brain Connect
                Brain Connect
                brain
                Brain Connectivity
                Mary Ann Liebert, Inc., publishers (140 Huguenot Street, 3rd FloorNew Rochelle, NY 10801USA )
                2158-0014
                2158-0022
                May 2021
                10 May 2021
                10 May 2021
                : 11
                : 4
                : 253-263
                Affiliations
                [ 1 ]Department of Psychiatry, Martinos Center for Biomedical Imaging, Charlestown, Massachusetts, USA.
                [ 2 ]Department of Psychology, Bucknell University, Lewisburg, Pennsylvania, USA.
                [ 3 ]Department of Psychiatry, Penn State College of Medicine, Hershey, Pennsylvania, USA.
                [ 4 ]Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, USA.
                [ 5 ]Department of Psychiatry and Behavioral Sciences, Duke Institute for Brain Science, Duke University, Durham, North Carolina, USA.
                Author notes
                [*]

                Current affiliation: Department of Psychological Sciences, Rice University, Houston, Texas, USA.

                [*]Address correspondence to: Amritha Harikumar, Department of Psychological Sciences, Rice University, 6566 Main St, BRC 780B, Houston, TX 77030, USA amritha.harikumar93@ 123456gmail.com
                Article
                10.1089/brain.2020.0865
                10.1089/brain.2020.0865
                8112713
                33403915
                845a14ec-92e8-4b0b-899d-b013110878dd
                © Amritha Harikumar et al., 2021; Published by Mary Ann Liebert, Inc.

                This Open Access article is distributed under the terms of the Creative Commons Attribution Noncommercial License [CC-BY-NC] ( http://creativecommons.org/licenses/by-nc/4.0/) which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and the source are cited.

                History
                Page count
                Figures: 1, References: 91, Pages: 11
                Categories
                Review

                adhd,asd,attention deficit hyperactivity disorder,autism spectrum disorders,default mode network,resting fmri

                Comments

                Comment on this article