+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Notopterol-induced apoptosis and differentiation in human acute myeloid leukemia HL-60 cells

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Purpose: This study aims to observe the effects of notopterol on the apoptosis and differentiation of HL-60 cells and to explore the underlying molecular mechanisms.

          Methods: Cell viability was assessed using sulforhodamine B assay. Cell proliferation was determined by the trypan blue dye exclusion test. Colony-forming units were assayed in methylcellulose. Apoptosis assays were carried out by annexin V-fluorescein isothiocyanate(FITC)/propidium iodide (PI) double staining, Hoechst 33342 staining, mitochondrial membrane potential, and Western blot. Wright–Giemsa staining, nitroblue tetrazolium (NBT) reduction assay, CD11b and CD14 and Western blot were detected for induction of differentiation. In addition, cell-cycle phase distribution was analyzed by flow cytometry and Western blot. The combination therapy of notopterol and all-trans retinoic acid (ATRA) on HL-60 cells was examined.

          Results: Notopterol obviously inhibited the growth of HL-60 cells with an IC 50 value of 40.32 μM and remarkably reduced the number of colonies by 10, 20, and 40 µM. In addtion, notopterol induced the percentage of apoptotic HL-60 cells, reduced the mitochondrial membrane potential, decreased the protein expresstion of Bcl-2 and Mcl-1, and increased the expression of Bax, cleavage of caspase 9, caspase 3, and PARP. As for cell differentiation, notopterol clearly induced chromatin condensation; increased the nucleocytoplasmic ratio, nitroblue tetrazolium-positive cells, expression of CD14 and CD11b, and protein expression of c-Jun and Jun B, and decreased c-myc. Furthermore, notopterol induced the G0/G1 cell-cycle arrest as determined using flow cytometry, which may be related to the regulation of cell-cycle-related proteins p53, CDK2, CDK4, Cyclin D1, Cyclin E, and survivin. The combined use of notopterol and ATRA did not enhance the apoptotic effect as evidenced by cell viability test and Hoechst 33342. However, the combination of notopterol and ATRA enhanced the effect of inducing differentiation when compared with using either notopterol or ATRA alone, which can be evidenced by the increased nucleocytoplasmic ratio, NBT positive cells, and expression of CD14.

          Conclusion: This is the first time it has been demonstrated that notopterol could induce apoptosis, differentiation, and G0/G1 arrest in human AML HL-60 cells, suggesting that notopterol has potential therapeutic effects on AML. The combination application of notopterol (20 and 40 μM) and ATRA (2 μM) could augment differentiation of HL-60 cells.

          Related collections

          Most cited references 22

          • Record: found
          • Abstract: found
          • Article: not found

          Cell cycle proteins as promising targets in cancer therapy

          Cancer is characterized by uncontrolled tumour cell proliferation resulting from aberrant activity of various cell cycle proteins. Therefore, cell cycle regulators are considered attractive targets in cancer therapy. Intriguingly, animal models demonstrate that some of these proteins are not essential for proliferation of non-transformed cells
            • Record: found
            • Abstract: found
            • Article: not found

            Acute myeloid leukaemia.

            Acute myeloid leukaemia (AML) is a heterogeneous clonal disorder of haemopoietic progenitor cells and the most common malignant myeloid disorder in adults. The median age at presentation for patients with AML is 70 years. In the past few years, research in molecular biology has been instrumental in deciphering the pathogenesis of the disease. Genetic defects are thought to be the most important factors in determining the response to chemotherapy and outcome. Whereas significant progress has been made in the treatment of younger adults, the prospects for elderly patients have remained dismal, with median survival times of only a few months. This difference is related to comorbidities associated with ageing and to disease biology. Current efforts in clinical research focus on the assessment of targeted therapies. Such new approaches will probably lead to an increase in the cure rate.
              • Record: found
              • Abstract: found
              • Article: not found

              Apoptosis: why and how does it occur in biology?

              The literature on apoptosis has grown tremendously in recent years, and the mechanisms that are involved in this programmed cell death pathway have been enlightened. It is now known that apoptosis takes place starting from early development to adult stage for the homeostasis of multicellular organisms, during disease development and in response to different stimuli in many different systems. In this review, we attempted to summarize the current knowledge on the circumstances and the mechanisms that lead to induction of apoptosis, while going over the molecular details of the modulator and mediators of apoptosis as well as drawing the lines between programmed and non-programmed cell death pathways. The review will particularly focus on Bcl-2 family proteins, the role of different caspases in the process of apoptosis, and their inhibitors as well as the importance of apoptosis during different disease states. Understanding the molecular mechanisms involved in apoptosis better will make a big impact on human diseases, particularly cancer, and its management in the clinics. Copyright © 2011 John Wiley & Sons, Ltd.

                Author and article information

                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                06 June 2019
                : 13
                : 1927-1940
                [1 ]College of Pharmacy, Chengdu University of Traditional Chinese Medicine , Chengdu 611137, People’s Republic of China
                [2 ]College of Pharmaceutical Sciences, Southwest University , Chongqing 400716, People’s Republic of China
                Author notes
                Correspondence: Hongyi QiCollege of Pharmaceutical Sciences, Southwest University , Tiansheng Road 2, Beibei District, Chongqing400716, People’s Republic of ChinaTel +86 236 825 1225Fax +86 236 825 1225Email hongyiqi@ 123456swu.edu.cn
                © 2019 Huang et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                Page count
                Figures: 8, References: 28, Pages: 14
                Original Research


                Comment on this article