13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Preclinical Modeling and Therapeutic Avenues for Cancer Metastasis to the Central Nervous System

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Metastasis is the dissemination of cells from the primary tumor to other locations within the body, and continues to be the predominant cause of death among cancer patients. Metastatic progression within the adult central nervous system is 10 times more frequent than primary brain tumors. Metastases affecting the brain parenchyma and leptomeninges are associated with grave prognosis, and even after successful control of the primary tumor the median survival is a dismal 2–3 months with treatment options typically limited to palliative care. Current treatment options for brain metastases (BM) and disseminated brain tumors are scarce, and the improvement of novel targeted therapies requires a broader understanding of the biological complexity that characterizes metastatic progression. In this review, we provide insight into patterns of BM progression and leptomeningeal spread, outlining the development of clinically relevant in vivo models and their contribution to the discovery of innovative cancer therapies. In vivo models paired with manipulation of in vitro methods have expanded the tools available for investigators to develop agents that can be used to prevent or treat metastatic disease. The knowledge gained from the use of such models can ultimately lead to the prevention of metastatic dissemination and can extend patient survival by transforming a uniformly fatal systemic disease into a locally controlled and eminently more treatable one.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          Genes that mediate breast cancer metastasis to the brain.

          The molecular basis for breast cancer metastasis to the brain is largely unknown. Brain relapse typically occurs years after the removal of a breast tumour, suggesting that disseminated cancer cells must acquire specialized functions to take over this organ. Here we show that breast cancer metastasis to the brain involves mediators of extravasation through non-fenestrated capillaries, complemented by specific enhancers of blood-brain barrier crossing and brain colonization. We isolated cells that preferentially infiltrate the brain from patients with advanced disease. Gene expression analysis of these cells and of clinical samples, coupled with functional analysis, identified the cyclooxygenase COX2 (also known as PTGS2), the epidermal growth factor receptor (EGFR) ligand HBEGF, and the alpha2,6-sialyltransferase ST6GALNAC5 as mediators of cancer cell passage through the blood-brain barrier. EGFR ligands and COX2 were previously linked to breast cancer infiltration of the lungs, but not the bones or liver, suggesting a sharing of these mediators in cerebral and pulmonary metastases. In contrast, ST6GALNAC5 specifically mediates brain metastasis. Normally restricted to the brain, the expression of ST6GALNAC5 in breast cancer cells enhances their adhesion to brain endothelial cells and their passage through the blood-brain barrier. This co-option of a brain sialyltransferase highlights the role of cell-surface glycosylation in organ-specific metastatic interactions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System.

            Population-based estimates of the incidence of brain metastases are not generally available. The purpose of this study was to calculate population-based incidence proportions (IPs) of brain metastases from single primary lung, melanoma, breast, renal, or colorectal cancer. Patients diagnosed with single primary lung, melanoma, breast, renal, or colorectal cancer (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System (MDCSS) were used for analysis. IP of brain metastases by primary site and variable of interest (race, sex, age at diagnosis of primary cancer, and Surveillance, Epidemiology, and End Results [SEER] stage of primary cancer) was calculated with 95% CIs. Total IP percentage (IP%) of brain metastases was 9.6% for all primary sites combined, and highest for lung (19.9%), followed by melanoma (6.9%), renal (6.5%), breast (5.1%), and colorectal (1.8%) cancers. Racial differences were seen with African Americans demonstrating higher IP% of brain metastases compared with other racial groups for most primary sites. IP% was significantly higher for female patients with lung cancer, and significantly higher for male patients with melanoma. The highest IP% of brain metastases occurred at different ages at diagnoses: age 40 to 49 years for primary lung cancer; age 50 to 59 years for primary melanoma, renal, or colorectal cancers; and age 20 to 39 for primary breast cancer. IP% significantly increased as SEER stage of primary cancer advanced for all primary sites. Total IP% of brain metastases was lower than previously reported, and it varied by primary site, race, sex, age at diagnosis of primary cancer, and SEER stage of primary cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Brain metastases: epidemiology and pathophysiology.

              Metastases are the most common tumors of the central nervous system (CNS), but cancer databases are often incomplete leading to underestimation of the incidence of even symptomatic brain metastases. Brain imaging studies are not routinely performed on neurologically asymptomatic cancer patients and autopsy studies are outdated. Furthermore, while incidence rates for cancers are stable and mortality is decreasing due to earlier detection and better therapy, the incidence of brain metastases appears to be increasing. The pathophysiology of brain metastases is a complex multistage process, mediated by molecular mechanisms; from the primary organ, cancer cells must transform, grow and be transported to the CNS where they can lay dormant for various lengths of time before invading and growing further. Understanding the pathophysiology of brain metastases is of great importance, because it may lead to the development of more efficient therapies to combat brain tumor growth or to possibly make the CNS an undesirable environment for tumor progression.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Oncol
                Front Oncol
                Front. Oncol.
                Frontiers in Oncology
                Frontiers Media S.A.
                2234-943X
                19 September 2017
                2017
                : 7
                : 220
                Affiliations
                [1] 1McMaster Stem Cell and Cancer Research Institute, McMaster University , Hamilton, ON, Canada
                [2] 2Faculty of Health Sciences, Department of Biochemistry and Biomedical Sciences, McMaster University , Hamilton, ON, Canada
                [3] 3Faculty of Health Sciences, Department of Surgery, McMaster University , Hamilton, ON, Canada
                Author notes

                Edited by: David D. Eisenstat, University of Alberta, Canada

                Reviewed by: Janusz Rak, McGill University, Canada; Sunit Das, University of Toronto, Canada; Todd Charles Hollon, University of Michigan Health System, United States

                *Correspondence: Sheila K. Singh, ssingh@ 123456mcmaster.ca

                Specialty section: This article was submitted to Neuro-Oncology and Neurosurgical Oncology, a section of the journal Frontiers in Oncology

                Article
                10.3389/fonc.2017.00220
                5609558
                857c19a5-0648-4ba3-a9cc-cb8057c9f038
                Copyright © 2017 Singh, Bakhshinyan, Venugopal and Singh.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 23 June 2017
                : 01 September 2017
                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 118, Pages: 11, Words: 9139
                Categories
                Oncology
                Review

                Oncology & Radiotherapy
                leptomeningeal metastasis,brain metastasis,in vivo models,metastasis,brain metastasis therapies

                Comments

                Comment on this article