+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plastic Pollution in the World's Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Plastic pollution is ubiquitous throughout the marine environment, yet estimates of the global abundance and weight of floating plastics have lacked data, particularly from the Southern Hemisphere and remote regions. Here we report an estimate of the total number of plastic particles and their weight floating in the world's oceans from 24 expeditions (2007–2013) across all five sub-tropical gyres, costal Australia, Bay of Bengal and the Mediterranean Sea conducting surface net tows (N = 680) and visual survey transects of large plastic debris (N = 891). Using an oceanographic model of floating debris dispersal calibrated by our data, and correcting for wind-driven vertical mixing, we estimate a minimum of 5.25 trillion particles weighing 268,940 tons. When comparing between four size classes, two microplastic <4.75 mm and meso- and macroplastic >4.75 mm, a tremendous loss of microplastics is observed from the sea surface compared to expected rates of fragmentation, suggesting there are mechanisms at play that remove <4.75 mm plastic particles from the ocean surface.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Transport and release of chemicals from plastics to the environment and to wildlife.

          Plastics debris in the marine environment, including resin pellets, fragments and microscopic plastic fragments, contain organic contaminants, including polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons, petroleum hydrocarbons, organochlorine pesticides (2,2'-bis(p-chlorophenyl)-1,1,1-trichloroethane, hexachlorinated hexanes), polybrominated diphenylethers, alkylphenols and bisphenol A, at concentrations from sub ng g(-1) to microg g(-1). Some of these compounds are added during plastics manufacture, while others adsorb from the surrounding seawater. Concentrations of hydrophobic contaminants adsorbed on plastics showed distinct spatial variations reflecting global pollution patterns. Model calculations and experimental observations consistently show that polyethylene accumulates more organic contaminants than other plastics such as polypropylene and polyvinyl chloride. Both a mathematical model using equilibrium partitioning and experimental data have demonstrated the transfer of contaminants from plastic to organisms. A feeding experiment indicated that PCBs could transfer from contaminated plastics to streaked shearwater chicks. Plasticizers, other plastics additives and constitutional monomers also present potential threats in terrestrial environments because they can leach from waste disposal sites into groundwater and/or surface waters. Leaching and degradation of plasticizers and polymers are complex phenomena dependent on environmental conditions in the landfill and the chemical properties of each additive. Bisphenol A concentrations in leachates from municipal waste disposal sites in tropical Asia ranged from sub microg l(-1) to mg l(-1) and were correlated with the level of economic development.
            • Record: found
            • Abstract: found
            • Article: not found

            Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel.

            Microplastics are present in marine habitats worldwide and laboratory studies show this material can be ingested, yet data on abundance in natural populations is limited. This study documents microplastics in 10 species of fish from the English Channel. 504 Fish were examined and plastics found in the gastrointestinal tracts of 36.5%. All five pelagic species and all five demersal species had ingested plastic. Of the 184 fish that had ingested plastic the average number of pieces per fish was 1.90±0.10. A total of 351 pieces of plastic were identified using FT-IR Spectroscopy; polyamide (35.6%) and the semi-synthetic cellulosic material, rayon (57.8%) were most common. There was no significant difference between the abundance of plastic ingested by pelagic and demersal fish. Hence, microplastic ingestion appears to be common, in relatively small quantities, across a range of fish species irrespective of feeding habitat. Further work is needed to establish the potential consequences. Copyright © 2012 Elsevier Ltd. All rights reserved.
              • Record: found
              • Abstract: found
              • Article: not found

              Plastic resin pellets as a transport medium for toxic chemicals in the marine environment.

              Plastic resin pellets (small granules 0.1-0.5 centimeters in diameter) are widely distributed in the ocean all over the world. They are an industrial raw material for the plastic industry and are unintentionally released to the environment both during manufacturing and transport. They are sometimes ingested by seabirds and other marine organisms, and their adverse effects on organisms are a concern. In the present study, PCBs, DDE, and nonylphenols (NP) were detected in polypropylene (PP) resin pellets collected from four Japanese coasts. Concentrations of PCBs (4-117 ng/g), DDE (0.16-3.1 ng/g), and NP (0.13-16 microg/g) varied among the sampling sites. These concentrations were comparable to those for suspended particles and bottom sediments collected from the same area as the pellets. Field adsorption experiments using PP virgin pellets demonstrated significant and steady increase in PCBs and DDE concentrations throughout the six-day experiment, indicating that the source of PCBs and DDE is ambient seawater and that adsorption to pellet surfaces is the mechanism of enrichment. The major source of NP in the marine PP resin pellets was thought to be plastic additives and/or their degradation products. Comparison of PCBs and DDE concentrations in mari

                Author and article information

                Role: Editor
                PLoS One
                PLoS ONE
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                10 December 2014
                : 9
                : 12
                : e111913
                [1 ]Five Gyres Institute, Los Angeles, California, United States of America
                [2 ]Dumpark Data Science, Wellington, New Zealand
                [3 ]Marine Science Department, University of Hawaii at Hilo, Hilo, Hawaii, United States of America
                [4 ]Washington Department of Fish and Wildlife, Olympia, Washington, United States of America
                [5 ]Facultad Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
                [6 ]Millennium Nucleus Ecology and Sustainable Management of Oceanic Island (ESMOI), Coquimbo, Chile
                [7 ]Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile
                [8 ]Algalita Marine Research and Education, Long Beach, California, United States of America
                [9 ]eCoast Limited, Raglan, New Zealand
                [10 ]Departement Océanographie et Dynamique des Ecosystemes, Institut français de recherche pour l′exploitation de la mer (Ifremer), Bastia, Corsica, France
                [11 ]Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
                [12 ]School of Environmental Systems Engineering and Oceans Institute, University of Western Australia, Crawley, Perth, Australia
                University of Connecticut, United States of America
                Author notes

                Competing Interests: Jose Borerro is affiliated wih eCoast Ltd., and this affiliation does not alter the authors' adherence to PLOS ONE policies on sharing data and materials. Laurent C. M. Lebreton is affiliated with Dumpark Creative Industries Ltd., and this affiliation does not alter the authors' adherence to PLOS ONE policies on sharing data and materials.

                Conceived and designed the experiments: ME LCML HSC MT JCB PGR JR. Performed the experiments: ME LCML HSC MT CJM JCB FG PGR JR. Analyzed the data: ME LCML HSC MT JCB. Contributed reagents/materials/analysis tools: LCML JCB. Wrote the paper: ME LCML HSC MT CJM JCB FG PGR JR. Calculated plastic fragmentation rates: MT. Designed ocean model: LCML JCB. Contributed field data: ME HSC MT CJM FG PGR JR.

                Copyright @ 2014

                This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

                : 6 May 2014
                : 2 October 2014
                Page count
                Pages: 15
                Financial support from the Will J. Reid Foundation (HSC) and Seaver Institute (ME) made much of this work possible. J. Reisser is sponsored by an IPRS and a CSIRO′s Flagship Postgraduate scholarship and M. Thiel was supported by the Chilean Millennium Initiative (grant NC120030). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Research Article
                Biology and Life Sciences
                Earth Sciences
                Marine and Aquatic Sciences
                Aquatic Environments
                Ecology and Environmental Sciences
                Environmental Geography
                Environmental Impacts
                Environmental Protection
                Sustainability Science
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. These data are available at figshare.com. Eriksen, Marcus; Reisser, Julia; Galgani, Francois; Moore, Charles; Ryan, Peter; Carson, Hank; Thiel, Martin (2014): Plastic Marine Pollution Global Dataset. figshare. http://dx.doi.org/10.6084/m9.figshare.1015289



                Comment on this article