5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Drought tolerant wheat IND-ØØ412-7 is nutritionally equivalent to its Non-Transgenic Comparator

      research-article
      a , b , c , c , a
      GM Crops & Food
      Taylor & Francis
      Broiler feeding, drought-tolerant wheat, GM wheat, HB4 wheat, transgenic wheat

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Expression of the HAHB4 sunflower transcription factor confers drought tolerance to wheat event IND-ØØ412-7 (HB4® wheat). After confirming the compositional equivalence of event IND-ØØ412-7 with conventional wheat, its nutritional similarity to its non-genetically modified (GM) counterpart was analyzed by performing a 42-day broiler feeding study. Isoenergetic diets containing 40% flour from wheat event IND-ØØ412-7, its non-GM counterpart Cadenza, and a commercial variety were included in the study. Broilers’ performance was analyzed by measuring feed intake, weight gain, feed conversion, and time to reach 2.8 kgs. The yield was evaluated by carcass weight, breast meat, and abdominal fat. No differences were found between wheat event IND-ØØ412-7 and the non-GM counterpart. A few significant differences were found with the commercial variety which were associated with the genetic background, different from the other two materials. These results support the nutritional equivalence of event IND-ØØ412-7 with conventional wheat.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Yield Trends Are Insufficient to Double Global Crop Production by 2050

          Several studies have shown that global crop production needs to double by 2050 to meet the projected demands from rising population, diet shifts, and increasing biofuels consumption. Boosting crop yields to meet these rising demands, rather than clearing more land for agriculture has been highlighted as a preferred solution to meet this goal. However, we first need to understand how crop yields are changing globally, and whether we are on track to double production by 2050. Using ∼2.5 million agricultural statistics, collected for ∼13,500 political units across the world, we track four key global crops—maize, rice, wheat, and soybean—that currently produce nearly two-thirds of global agricultural calories. We find that yields in these top four crops are increasing at 1.6%, 1.0%, 0.9%, and 1.3% per year, non-compounding rates, respectively, which is less than the 2.4% per year rate required to double global production by 2050. At these rates global production in these crops would increase by ∼67%, ∼42%, ∼38%, and ∼55%, respectively, which is far below what is needed to meet projected demands in 2050. We present detailed maps to identify where rates must be increased to boost crop production and meet rising demands.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The contribution of wheat to human diet and health

            Abstract Wheat is the most important staple crop in temperate zones and is in increasing demand in countries undergoing urbanization and industrialization. In addition to being a major source of starch and energy, wheat also provides substantial amounts of a number of components which are essential or beneficial for health, notably protein, vitamins (notably B vitamins), dietary fiber, and phytochemicals. Of these, wheat is a particularly important source of dietary fiber, with bread alone providing 20% of the daily intake in the UK, and well‐established relationships between the consumption of cereal dietary fiber and reduced risk of cardio‐vascular disease, type 2 diabetes, and forms of cancer (notably colo‐rectal cancer). Wheat shows high variability in the contents and compositions of beneficial components, with some (including dietary fiber) showing high heritability. Hence, plant breeders should be able to select for enhanced health benefits in addition to increased crop yield.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cross-talk between ethylene and drought signalling pathways is mediated by the sunflower Hahb-4 transcription factor.

              Hahb-4 is a member of the Helianthusannuus (sunflower) subfamily I of HD-Zip proteins that is transcriptionally regulated by water availability and abscisic acid. Transgenic Arabidopsis thaliana plants overexpressing this transcription factor (TF) exhibit a characteristic phenotype that includes a strong tolerance to water stress. Here we show that this TF is a new component of ethylene signalling pathways, and that it induces a marked delay in senescence. Plants overexpressing Hahb-4 are less sensitive to external ethylene, enter the senescence pathway later and do not show the typical triple response. Furthermore, transgenic plants expressing this gene under the control of its own inducible promoter showed an inverse correlation between ethylene sensitivity and Hahb-4 levels. Potential targets of Hahb-4 were identified by comparing the transcriptome of Hahb-4-transformed and wild-type plants using microarrays and quantitative RT-PCR. Expression of this TF has a major repressive effect on genes related to ethylene synthesis, such as ACO and SAM, and on genes related to ethylene signalling, such as ERF2 and ERF5. Expression studies in sunflower indicate that Hahb-4 transcript levels are elevated in mature/senescent leaves. Expression of Hahb-4 is induced by ethylene, concomitantly with several genes homologous to the targets identified in the transcriptome analysis (HA-ACOa and HA-ACOb). Transient transformation of sunflower leaves demonstrated the action of Hahb-4 in the regulation of ethylene-related genes. We propose that Hahb-4 is involved in a novel conserved mechanism related to ethylene-mediated senescence that functions to improve desiccation tolerance.
                Bookmark

                Author and article information

                Journal
                GM Crops Food
                GM Crops Food
                GM Crops & Food
                Taylor & Francis
                2164-5698
                2164-5701
                3 June 2022
                2022
                3 June 2022
                : 13
                : 1
                : 119-125
                Affiliations
                [a ]Instituto de Agrobiotecnología Rosario (INDEAR); , Santa Fe, Argentina
                [b ] Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina;
                [c ] Instituto Nacional de Tecnología Agropecuaria (INTA) - Estación Experimental Agropecuaria Pergamino, Buenos Aires, Argentina;
                Author notes
                CONTACT Patricia V. Miranda patricia.miranda@ 123456indear.com Instituto de Agrobiotecnología Rosario (INDEAR); , Ocampo bis 210, Rosario, Santa Fe, Argentina
                Author information
                https://orcid.org/0000-0003-3152-2824
                https://orcid.org/0000-0001-7031-6420
                https://orcid.org/0000-0002-8531-4150
                Article
                2079179
                10.1080/21645698.2022.2079179
                9176220
                35656970
                85a8e153-8d02-4944-84dd-fb624f45b0fe
                © 2022 The Author(s). Published with license by Taylor & Francis Group, LLC.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Figures: 0, Tables: 5, References: 29, Pages: 7
                Categories
                Research Article
                Research Article

                broiler feeding,drought-tolerant wheat,gm wheat,hb4 wheat,transgenic wheat

                Comments

                Comment on this article

                scite_

                Similar content75

                Cited by3

                Most referenced authors246