18
views
0
recommends
+1 Recommend
0 collections
    3
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Observational Study Unveils the Extensive Presence of Hazardous Elements in Beached Plastics from Lake Geneva

      ,
      Frontiers in Environmental Science
      Frontiers Media SA

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Microplastic pollution in the surface waters of the Laurentian Great Lakes

          Neuston samples were collected at 21 stations during an ~700 nautical mile (~1300 km) expedition in July 2012 in the Laurentian Great Lakes of the United States using a 333 μm mesh manta trawl and analyzed for plastic debris. Although the average abundance was approximately 43,000 microplastic particles/km², station 20, downstream from two major cities, contained over 466,000 particles/km², greater than all other stations combined. SEM analysis determined nearly 20% of particles less than 1 mm, which were initially identified as microplastic by visual observation, were aluminum silicate from coal ash. Many microplastic particles were multi-colored spheres, which were compared to, and are suspected to be, microbeads from consumer products containing microplastic particles of similar size, shape, texture and composition. The presence of microplastics and coal ash in these surface samples, which were most abundant where lake currents converge, are likely from nearby urban effluent and coal burning power plants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress

            Plastic debris litters aquatic habitats globally, the majority of which is microscopic (< 1 mm), and is ingested by a large range of species. Risks associated with such small fragments come from the material itself and from chemical pollutants that sorb to it from surrounding water. Hazards associated with the complex mixture of plastic and accumulated pollutants are largely unknown. Here, we show that fish, exposed to a mixture of polyethylene with chemical pollutants sorbed from the marine environment, bioaccumulate these chemical pollutants and suffer liver toxicity and pathology. Fish fed virgin polyethylene fragments also show signs of stress, although less severe than fish fed marine polyethylene fragments. We provide baseline information regarding the bioaccumulation of chemicals and associated health effects from plastic ingestion in fish and demonstrate that future assessments should consider the complex mixture of the plastic material and their associated chemical pollutants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects

              Due to the widespread use and durability of synthetic polymers, plastic debris occurs in the environment worldwide. In the present work, information on sources and fate of microplastic particles in the aquatic and terrestrial environment, and on their uptake and effects, mainly in aquatic organisms, is reviewed. Microplastics in the environment originate from a variety of sources. Quantitative information on the relevance of these sources is generally lacking, but first estimates indicate that abrasion and fragmentation of larger plastic items and materials containing synthetic polymers are likely to be most relevant. Microplastics are ingested and, mostly, excreted rapidly by numerous aquatic organisms. So far, there is no clear evidence of bioaccumulation or biomagnification. In laboratory studies, the ingestion of large amounts of microplastics mainly led to a lower food uptake and, consequently, reduced energy reserves and effects on other physiological functions. Based on the evaluated data, the lowest microplastic concentrations affecting marine organisms exposed via water are much higher than levels measured in marine water. In lugworms exposed via sediment, effects were observed at microplastic levels that were higher than those in subtidal sediments but in the same range as maximum levels in beach sediments. Hydrophobic contaminants are enriched on microplastics, but the available experimental results and modelling approaches indicate that the transfer of sorbed pollutants by microplastics is not likely to contribute significantly to bioaccumulation of these pollutants. Prior to being able to comprehensively assess possible environmental risks caused by microplastics a number of knowledge gaps need to be filled. However, in view of the persistence of microplastics in the environment, the high concentrations measured at some environmental sites and the prospective of strongly increasing concentrations, the release of plastics into the environment should be reduced in a broad and global effort regardless of a proof of an environmental risk. Electronic supplementary material The online version of this article (doi:10.1186/s12302-015-0069-y) contains supplementary material, which is available to authorised users.
                Bookmark

                Author and article information

                Journal
                Frontiers in Environmental Science
                Front. Environ. Sci.
                Frontiers Media SA
                2296-665X
                February 2 2018
                February 2 2018
                : 6
                :
                Article
                10.3389/fenvs.2018.00001
                85cfcd9e-45b7-44a9-bf8e-45498846dcda
                © 2018
                History

                Comments

                Comment on this article