3
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Home-Based Remedies to Prevent COVID-19-Associated Risk of Infection, Admission, Severe Disease, and Death: A Nested Case-Control Study

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          This study aimed at determining the various types of home-based remedies, mode of administration, prevalence of use, and their relevance in reducing the risk of infection, hospital admission, severe disease, and death.

          Methods

          The study design is an open cohort of all participants who presented for testing for COVID-19 at the Infectious Disease Treatment Centre (Tamale) and were followed up for a period of six weeks. A nested case-control study was designed. Numerical data were analysed using STATA version 14, and qualitative data were thematically analysed.

          Results

          A total of 882 participants made up of 358 (40.6%) cases and 524 (59.4%) unmatched controls took part in the study. The prevalence of usage of home-based remedies to prevent COVID-19 was 29.6% ( n = 261). These include drinks (34.1% ( n = 100)), changes in eating habits/food (33.8% ( n = 99)), physical exercise (18.8% ( n = 55)), steam inhalation (9.9% ( n = 29)), herbal baths (2.7% ( n = 8)), and gurgle (0.7 ( n = 2)). Participants who practiced any form of home-based therapy were protected from SARS-CoV-2 infection (OR = 0.28 (0.20–0.39)), severe/critical COVID-19 (OR = 0.15 (0.05–0.48)), hospital admission (OR = 0.15 (0.06–0.38)), and death (OR = 0.31 (0.07–1.38)). Analysis of the various subgroups of the home-based therapies, however, demonstrated that not all the home-based remedies were effective. Steam inhalation and herbal baths were associated with 26.6 (95% CI = 6.10–116.24) and 2.7 (95% CI = 0.49–14.78) times increased risk of infection, respectively. However, change in diet (AOR = 0.01 (0.00–0.13)) and physical exercise (AOR = 0.02 (0.00–0.26)) remained significantly associated with a reduced risk of infection. We described results of thematic content analysis regarding the common ingredients in the drinks, diets, and other home-based methods administered.

          Conclusion

          Almost a third of persons presenting for COVID-19 test were involved in some form of home-based remedy to prevent COVID-19. Steam inhalation and herbal baths increased risk of COVID-19 infection, while physical exercise and dietary changes were protective against COVID-19 infection and hospital admission. Future protocols might consider inclusion of physical activity and dietary changes based on demonstrated health gains.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: found

          Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis

          Summary Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19 and is spread person-to-person through close contact. We aimed to investigate the effects of physical distance, face masks, and eye protection on virus transmission in health-care and non-health-care (eg, community) settings. Methods We did a systematic review and meta-analysis to investigate the optimum distance for avoiding person-to-person virus transmission and to assess the use of face masks and eye protection to prevent transmission of viruses. We obtained data for SARS-CoV-2 and the betacoronaviruses that cause severe acute respiratory syndrome, and Middle East respiratory syndrome from 21 standard WHO-specific and COVID-19-specific sources. We searched these data sources from database inception to May 3, 2020, with no restriction by language, for comparative studies and for contextual factors of acceptability, feasibility, resource use, and equity. We screened records, extracted data, and assessed risk of bias in duplicate. We did frequentist and Bayesian meta-analyses and random-effects meta-regressions. We rated the certainty of evidence according to Cochrane methods and the GRADE approach. This study is registered with PROSPERO, CRD42020177047. Findings Our search identified 172 observational studies across 16 countries and six continents, with no randomised controlled trials and 44 relevant comparative studies in health-care and non-health-care settings (n=25 697 patients). Transmission of viruses was lower with physical distancing of 1 m or more, compared with a distance of less than 1 m (n=10 736, pooled adjusted odds ratio [aOR] 0·18, 95% CI 0·09 to 0·38; risk difference [RD] −10·2%, 95% CI −11·5 to −7·5; moderate certainty); protection was increased as distance was lengthened (change in relative risk [RR] 2·02 per m; p interaction=0·041; moderate certainty). Face mask use could result in a large reduction in risk of infection (n=2647; aOR 0·15, 95% CI 0·07 to 0·34, RD −14·3%, −15·9 to −10·7; low certainty), with stronger associations with N95 or similar respirators compared with disposable surgical masks or similar (eg, reusable 12–16-layer cotton masks; p interaction=0·090; posterior probability >95%, low certainty). Eye protection also was associated with less infection (n=3713; aOR 0·22, 95% CI 0·12 to 0·39, RD −10·6%, 95% CI −12·5 to −7·7; low certainty). Unadjusted studies and subgroup and sensitivity analyses showed similar findings. Interpretation The findings of this systematic review and meta-analysis support physical distancing of 1 m or more and provide quantitative estimates for models and contact tracing to inform policy. Optimum use of face masks, respirators, and eye protection in public and health-care settings should be informed by these findings and contextual factors. Robust randomised trials are needed to better inform the evidence for these interventions, but this systematic appraisal of currently best available evidence might inform interim guidance. Funding World Health Organization.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            COVID-19 pathophysiology: A review

            In December 2019, a novel coronavirus, now named as SARS-CoV-2, caused a series of acute atypical respiratory diseases in Wuhan, Hubei Province, China. The disease caused by this virus was termed COVID-19. The virus is transmittable between humans and has caused pandemic worldwide. The number of death tolls continues to rise and a large number of countries have been forced to do social distancing and lockdown. Lack of targeted therapy continues to be a problem. Epidemiological studies showed that elder patients were more susceptible to severe diseases, while children tend to have milder symptoms. Here we reviewed the current knowledge about this disease and considered the potential explanation of the different symptomatology between children and adults.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Clinical course and mortality risk of severe COVID-19

              Several published reports of early clinical descriptions of coronavirus disease 2019 (COVID-19) have emerged from Hubei province in China, and many more will come. These early reports, typically simple descriptive case series of patients hospitalised with COVID-19 (mostly with pneumonia), provide valuable information on the more severe end of the disease spectrum. We tend to hear more about the most severe cases in the early stages of a new disease, as these are the ones first brought to the public's attention and are associated with deaths. However, it is important to bear in mind that the current best estimate is that about 81% of people with COVID-19 have mild disease 1 and never require hospitalisation. These cases have not yet featured much in published clinical descriptions. In The Lancet, Fei Zhou and colleagues 2 provide further insight into the clinical course and mortality risk for adults with COVID-19 severe enough to require hospitalisation. They report findings from 191 patients with COVID-19 from Wuhan during the first month of the outbreak, and follow them through to discharge (n=137) or death (n=54). The follow-up until discharge or death is a point of difference from other case series to date. Their cohort had many characteristics in common with other reports3, 4, 5—a median age of 56·0 years (IQR 46·0–67·0), a high percentage (62%) of men, and nearly half (48%) of patients with comorbidities. In-hospital death was associated with, on admission, older age (odds ratio 1·10, 95% CI 1·03–1·17; p=0·0043), a higher Sequential Organ Failure Assessment score (5·65, 2·61–12·23; p<0·0001), and blood d-dimer greater than 1 μg/mL (18·42, 2·64–128·55; p=0·0033), findings known to be associated with severe pneumonia.6, 7 The study also presents early data on changes in clinical and laboratory findings over time, which could help clinicians to identify patients who progress to more severe disease. In-hospital mortality was high (28%), much higher than in other reports that had incomplete follow-up data,3, 5, 8 and was very high among the 32 patients requiring invasive mechanical ventilation, of whom 31 (97%) died. This might reflect a higher proportion of patients admitted with severe disease in the early stages of the outbreak. In another report from Wuhan, mortality was 62% among critically ill patients with COVID-19 and 81% among those requiring mechanical ventilation. 9 While the world awaits further information from other locations, including from outside China, the current message is that mortality is high among the minority of people with COVID-19 who get severe disease. The cohort design of this study provides excellent front-line information about mortality risk. It is essential for readers to understand that this truly is a retrospective cohort design, even if it might appear otherwise at first. Careful consideration of the design is essential to understanding the findings. The authors were able to collect a wealth of information from admission to discharge on many of the earliest known cases of coronavirus in the world. By identifying this large group of patients united by their disease and tracking them to these endpoints, the authors have provided us with insight into risk factors for in-hospital death. Even though their cohort does not include the censored observations of patients admitted during the study timeframe but not discharged by the end timepoint, these results can still be considerably useful for epidemiological description of the disease in terms of person-level risk. By excluding incomplete observations, it is possible that the reported mortality rate is biased to appear larger than it is, as data from those patients who were not discharged by the end timepoint were not included. However, as a true population at risk of mortality, these patients are representative of the earliest onset of COVID-19. Excluding patients who began treatment well into the epidemic brings homogeneity to the exposure level and treatment. These preliminary data provide an important framework to build on as the world moves forward in the fight against this pandemic. The timeliness and value of this information far outweigh the slight bias stemming from the exclusion of patients with incomplete data at the end of the study period. © 2020 STR/Getty Images 2020 Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. The report by Zhou and colleagues also provides data on viral shedding. 2 Throat swabs were obtained every other day and were PCR positive for a median of 20·0 days (IQR 16·0–23·0) after onset of symptoms. In survivors, median duration of viral shedding was 20·0 days (17·0–24·0), ranging from 8 to 37 days, but the virus was detectable until death in non-survivors. These early findings are similar to those reported for the severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome coronaviruses,10, 11, 12 and we await more detailed information on viral load kinetics and shedding of SARS coronavirus 2 in various disease states. Importantly, PCR positivity does not necessarily indicate viable virus, and additional data are needed to better understand the infectious period of COVID-19 and implications for treatment and infection control. Although there is always the limitation of generalisability in epidemic investigations, this study adds to a rapidly growing knowledge base on the clinical course and mortality risk of COVID-19. We now have a better understanding of the severity of hospitalised COVID-19, but more data are needed on treatment options that improve survival.
                Bookmark

                Author and article information

                Contributors
                Journal
                Evid Based Complement Alternat Med
                Evid Based Complement Alternat Med
                ECAM
                Evidence-based Complementary and Alternative Medicine : eCAM
                Hindawi
                1741-427X
                1741-4288
                2022
                16 March 2022
                16 March 2022
                : 2022
                : 4559897
                Affiliations
                1Tamale Teaching Hospital, Tamale, Ghana
                2Department of Community Health, University of Ghana Medical School, Accra, Ghana
                3Department of Medicine, Korle-Bu Teaching Hospital, Accra, Ghana
                4Department of Population Health, Department of Medicine, NYU Langone Health, New York, USA
                5Department of Obstetrics and Gynaecology, University of Ghana Medical School, Korle-Bu, Accra, Ghana
                6Department of Emergency Medicine, New York University School of Medicine, New York, NY, USA
                7Department of Biochemistry & Molecular Medicine, School of Medicine, University for Development Studies, Tamale, Ghana
                Author notes

                Academic Editor: Woon-Man Kung

                Author information
                https://orcid.org/0000-0003-4946-508X
                https://orcid.org/0000-0002-4299-8919
                https://orcid.org/0000-0001-8169-4793
                https://orcid.org/0000-0002-7279-1839
                https://orcid.org/0000-0002-6133-240X
                https://orcid.org/0000-0001-8219-6980
                https://orcid.org/0000-0001-6960-5751
                https://orcid.org/0000-0002-8767-6681
                https://orcid.org/0000-0003-1468-301X
                https://orcid.org/0000-0001-7138-2382
                Article
                10.1155/2022/4559897
                8927972
                35310036
                85ddc20e-4eeb-41f0-8373-ae753d2d5337
                Copyright © 2022 Benjamin Demah Nuertey et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 31 October 2021
                : 18 February 2022
                Categories
                Research Article

                Complementary & Alternative medicine
                Complementary & Alternative medicine

                Comments

                Comment on this article