23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Activation of Interleukin-32 Pro-Inflammatory Pathway in Response to Influenza A Virus Infection

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Interleukin (IL)-32 is a recently described pro-inflammatory cytokine that has been reported to be induced by bacteria treatment in culture cells. Little is known about IL-32 production by exogenous pathogens infection in human individuals.

          Methods and Findings

          In this study, we found that IL-32 level was increased by 58.2% in the serum samples from a cohort of 108 patients infected by influenza A virus comparing to that of 115 healthy individuals. Another pro-inflammatory factor cyclooxygenase (COX)-2-associated prostaglandin E2 was also upregulated by 2.7-fold. Expression of IL-32 in influenza A virus infected A549 human lung epithelial cells was blocked by either selective COX-2 inhibitor NS398 or Aspirin, a known anti-inflammatory drug, indicating IL-32 was induced through COX-2 in the inflammatory cascade. Interestingly, we found that COX-2-associate PGE 2 production activated by influenza virus infection was significantly suppressed by over-expression of IL-32 but increased by IL-32-specific siRNA, suggesting there was a feedback mechanism between IL-32 and COX-2.

          Conclusions

          IL-32 is induced by influenza A virus infection via COX-2 in the inflammatory cascade. Our results provide that IL-32 is a potential target for anti-inflammatory medicine screening.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Involvement of toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus.

          Influenza A is a highly contagious single-stranded RNA virus that infects both the upper and lower respiratory tracts of humans. The host innate immune Toll-like receptor (TLR) 3 was shown previously in cells of myeloid origin to recognize the viral replicative, intermediate double-stranded RNA (dsRNA). Thus, dsRNA may be critical for the outcome of the infection. Here we first compared the activation triggered by either influenza A virus or dsRNA in pulmonary epithelial cells. We established that TLR3 is constitutively expressed in human alveolar and bronchial epithelial cells, and we describe its intracellular localization. Expression of TLR3 was positively regulated by the influenza A virus and by dsRNA but not by other inflammatory mediators, including bacterial lipopolysaccharide, the cytokines tumor necrosis factor-alpha and interleukin (IL)-1beta, and the protein kinase C activator phorbol 12-myristate 13-acetate. We also demonstrated that TLR3 contributes directly to the immune response of respiratory epithelial cells to influenza A virus and dsRNA, and we propose a molecular mechanism by which these stimuli induce epithelial cell activation. This model involves mitogen-activated protein kinases, phosphatidylinositol 3-kinase/Akt signaling, and the TLR3-associated adaptor molecule TRIF but not MyD88-dependent activation of the transcription factors NF-kappaB or interferon regulatory factor/interferon-sensitive response-element pathways. Ultimately, this signal transduction elicits an epithelial response that includes the secretion of the cytokines IL-8, IL-6, RANTES (regulated on activation normal T cell expressed and secreted), and interferon-beta and the up-regulation of the major adhesion molecule ICAM-1.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interleukin-32: a cytokine and inducer of TNFalpha.

            We describe the gene structure, regulation, signal transduction. and functions of a cytokine, interleukin (IL)-32. An IL-18 unresponsive cell was converted to a responsive cell by transfection of the IL-18 receptor beta chain, and IL-18-induced microarray revealed high expression of a cytokine-like gene. Although IL-32 does not share sequence homology with known cytokine families, IL-32 induces various cytokines, human TNFalpha, and IL-8 in THP-1 monocytic cells as well as mouse TNFalpha and MIP-2 in Raw macrophage cells. IL-32 activates typical cytokine signal pathways of nuclear factor-kappa B (NF-kappaB) and p38 mitogen-activated protein kinase. IL-32 mRNA is highly expressed in immune tissue rather than other tissues. Human IL-32 exists as four splice variants, and IL-32 from other species were found as expressed sequence tag clones in the databank. Induced in human peripheral lymphocyte cells after mitogen stimulation, in human epithelial cells by IFNgamma, and in NK cells after exposure to the combination of IL-12 plus IL-18, IL-32 may play a role in inflammatory/autoimmune diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cutting Edge: Influenza A virus activates TLR3-dependent inflammatory and RIG-I-dependent antiviral responses in human lung epithelial cells.

              Influenza A virus (IAV) triggers a contagious acute respiratory disease that causes considerable mortality annually. Recently, we established a role for the pattern-recognition TLR3 in the response of lung epithelial cells to IAV-derived dsRNA. However, additional nucleic acid-recognition proteins have lately been implicated as key viral sensors, including the RNA helicases retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated gene (MDA)-5. In this study, we investigated the respective role of TLR3 vs RIG-I/MDA-5 signaling in human respiratory epithelial cells infected by IAV using BEAS-2B cells transfected with vectors encoding either a dominant-negative form of TLR3 or of mitochondrial antiviral signaling protein (MAVS; a signaling intermediate of RIG-I and MDA-5), or with plasmids overexpressing functional RIG-I or MDA-5. We demonstrate that the sensing of IAV by TLR3 primarily regulates a proinflammatory response, whereas RIG-I (but not MDA-5) mediates both a type I IFN-dependent antiviral signaling and a proinflammatory response.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2008
                16 April 2008
                : 3
                : 4
                : e1985
                Affiliations
                [1]State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
                University of Birmingham, United Kingdom
                Author notes

                Conceived and designed the experiments: YZ WL JW. Performed the experiments: WL YL SR YG GP YC. Analyzed the data: WL YL JW. Contributed reagents/materials/analysis tools: MM RG YP SR LK QH XC. Wrote the paper: YZ WL.

                Article
                08-PONE-RA-03363R1
                10.1371/journal.pone.0001985
                2288676
                18414668
                8623022b-7bc4-41cb-bf5b-85af0180fea4
                Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 18 January 2008
                : 28 February 2008
                Page count
                Pages: 9
                Categories
                Research Article
                Immunology/Immunity to Infections
                Virology/Effects of Virus Infection on Host Gene Expression
                Infectious Diseases/Respiratory Infections

                Uncategorized
                Uncategorized

                Comments

                Comment on this article