3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Heterogeneous Bimetallic Phosphide Ni 2 P‐Fe 2 P as an Efficient Bifunctional Catalyst for Water/Seawater Splitting

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Combining theory and experiment in electrocatalysis: Insights into materials design

          Electrocatalysis plays a central role in clean energy conversion, enabling a number of sustainable processes for future technologies. This review discusses design strategies for state-of-the-art heterogeneous electrocatalysts and associated materials for several different electrochemical transformations involving water, hydrogen, and oxygen, using theory as a means to rationalize catalyst performance. By examining the common principles that govern catalysis for different electrochemical reactions, we describe a systematic framework that clarifies trends in catalyzing these reactions, serving as a guide to new catalyst development while highlighting key gaps that need to be addressed. We conclude by extending this framework to emerging clean energy reactions such as hydrogen peroxide production, carbon dioxide reduction, and nitrogen reduction, where the development of improved catalysts could allow for the sustainable production of a broad range of fuels and chemicals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The role of hydrogen and fuel cells in the global energy system

            Hydrogen has been ‘just around the corner’ for decades, but now offers serious alternatives for decarbonising global heat, power and transport. Hydrogen technologies have experienced cycles of excessive expectations followed by disillusion. Nonetheless, a growing body of evidence suggests these technologies form an attractive option for the deep decarbonisation of global energy systems, and that recent improvements in their cost and performance point towards economic viability as well. This paper is a comprehensive review of the potential role that hydrogen could play in the provision of electricity, heat, industry, transport and energy storage in a low-carbon energy system, and an assessment of the status of hydrogen in being able to fulfil that potential. The picture that emerges is one of qualified promise: hydrogen is well established in certain niches such as forklift trucks, while mainstream applications are now forthcoming. Hydrogen vehicles are available commercially in several countries, and 225 000 fuel cell home heating systems have been sold. This represents a step change from the situation of only five years ago. This review shows that challenges around cost and performance remain, and considerable improvements are still required for hydrogen to become truly competitive. But such competitiveness in the medium-term future no longer seems an unrealistic prospect, which fully justifies the growing interest and policy support for these technologies around the world.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction.

              The urgent need of clean and renewable energy drives the exploration of effective strategies to produce molecular hydrogen. With the assistance of highly active non-noble metal electrocatalysts, electrolysis of water is becoming a promising candidate to generate pure hydrogen with low cost and high efficiency. Very recently, transition metal phosphides (TMPs) have been proven to be high performance catalysts with high activity, high stability, and nearly ∼100% Faradic efficiency in not only strong acidic solutions, but also in strong alkaline and neutral media for electrochemical hydrogen evolution. In this tutorial review, an overview of recent development of TMP nanomaterials as catalysts for hydrogen generation with high activity and stability is presented. The effects of phosphorus (P) on HER activity, and their synthetic methods of TMPs are briefly discussed. Then we will demonstrate the specific strategies to further improve the catalytic efficiency and stability of TMPs by structural engineering. Making use of TMPs as cocatalysts and catalysts in photochemical and photoelectrochemical water splitting is also discussed. Finally, some key challenges and issues which should not be ignored during the rapid development of TMPs are pointed out. These strategies and challenges of TMPs are instructive for designing other high-performance non-noble metal catalysts.
                Bookmark

                Author and article information

                Contributors
                Journal
                Advanced Functional Materials
                Adv. Funct. Mater.
                Wiley
                1616-301X
                1616-3028
                January 2021
                September 28 2020
                January 2021
                : 31
                : 1
                : 2006484
                Affiliations
                [1 ]Department of Physics and Texas Center for Superconductivity at the University of Houston (TcSUH) University of Houston Houston TX 77204 USA
                [2 ]Materials Science and Engineering Program University of Houston Houston TX 77204 USA
                [3 ]Department of Chemical and Biomolecular Engineering University of Houston Houston TX 77204 USA
                Article
                10.1002/adfm.202006484
                867301d8-4150-4614-903c-0aa44d0a84be
                © 2021

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article