3
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Long, thin transmission chains of Severe Acute Respiratory Syndrome Coronavirus 2 may go undetected for several weeks at low to moderate reproduction numbers: Implications for containment and elimination strategy

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Severe Acute Respiratory Syndrome Coronavirus 1 (SARS-CoV-1) infections almost always caused overt symptoms, so effective case and contact management enabled its effective eradication within months. However, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) usually causes only mild symptoms, so transmission chains may grow to include several individuals before at least one index case becomes ill enough to self-report for diagnosis and care. Here, simple mathematical models were developed to evaluate the implications of delayed index case detection for retrospective contact tracing and management responses. Specifically, these simulations illustrate how: (1) Contact tracing and management may effectively contain most but not all large SARS-CoV-2 clusters arising at foci with high reproduction numbers because rapidly expanding transmission chains ensure at least one overtly symptomatic index case occurs within two viral generations a week or less apart. (2) However, lower reproduction numbers give rise to thinner transmission chains extending through longer sequences of non-reporting asymptomatic and paucisymptomatic individuals, often spanning three or more viral generations (≥2 weeks of transmission) before an overtly symptomatic index case occurs. (3) Consequently, it is not always possible to fully trace and contain such long, thin transmission chains, so the community transmission they give rise to is underrepresented in surveillance data. (4) Wherever surveillance systems are weak and/or transmission proceeds within population groups with lower rates of overt clinical symptoms and/or self-reporting, case and contact management effectiveness may be more severely limited, even at the higher reproduction numbers associated with larger outbreaks. (5) Because passive surveillance platforms may be especially slow to detect the thinner transmission chains that occur at low reproduction numbers, establishing satisfactory confidence of elimination may require that no confirmed cases are detected for two full months, throughout which presumptive preventative measures must be maintained to ensure complete collapse of undetected residual transmission. (6) Greater scope exists for overcoming these limitations by enhancing field surveillance for new suspected cases than by improving diagnostic test sensitivity. (7) While population-wide active surveillance may enable complete traceability and containment, this goal may also be achievable through enhanced passive surveillance for paucisymptomatic infections, combining readily accessible decentralized testing with population hypersensitization to self-reporting with mild symptoms. Containment and elimination of SARS-CoV-2 will rely far more upon presumptive, population-wide prevention measures than was necessary for SARS-CoV-1, necessitating greater ambition, political will, investment, public support, persistence and patience. Nevertheless, case and contact management may be invaluable for at least partially containing SARS-CoV-2 transmission, especially larger outbreaks, but only if enabled by sufficiently sensitive surveillance. Furthermore, consistently complete transmission chain containment may be enabled by focally enhanced surveillance around manageably small numbers of outbreaks in the end stages of successful elimination campaigns, so that their endpoints may be accelerated and sustained.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: found

          Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis

          Summary Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19 and is spread person-to-person through close contact. We aimed to investigate the effects of physical distance, face masks, and eye protection on virus transmission in health-care and non-health-care (eg, community) settings. Methods We did a systematic review and meta-analysis to investigate the optimum distance for avoiding person-to-person virus transmission and to assess the use of face masks and eye protection to prevent transmission of viruses. We obtained data for SARS-CoV-2 and the betacoronaviruses that cause severe acute respiratory syndrome, and Middle East respiratory syndrome from 21 standard WHO-specific and COVID-19-specific sources. We searched these data sources from database inception to May 3, 2020, with no restriction by language, for comparative studies and for contextual factors of acceptability, feasibility, resource use, and equity. We screened records, extracted data, and assessed risk of bias in duplicate. We did frequentist and Bayesian meta-analyses and random-effects meta-regressions. We rated the certainty of evidence according to Cochrane methods and the GRADE approach. This study is registered with PROSPERO, CRD42020177047. Findings Our search identified 172 observational studies across 16 countries and six continents, with no randomised controlled trials and 44 relevant comparative studies in health-care and non-health-care settings (n=25 697 patients). Transmission of viruses was lower with physical distancing of 1 m or more, compared with a distance of less than 1 m (n=10 736, pooled adjusted odds ratio [aOR] 0·18, 95% CI 0·09 to 0·38; risk difference [RD] −10·2%, 95% CI −11·5 to −7·5; moderate certainty); protection was increased as distance was lengthened (change in relative risk [RR] 2·02 per m; p interaction=0·041; moderate certainty). Face mask use could result in a large reduction in risk of infection (n=2647; aOR 0·15, 95% CI 0·07 to 0·34, RD −14·3%, −15·9 to −10·7; low certainty), with stronger associations with N95 or similar respirators compared with disposable surgical masks or similar (eg, reusable 12–16-layer cotton masks; p interaction=0·090; posterior probability >95%, low certainty). Eye protection also was associated with less infection (n=3713; aOR 0·22, 95% CI 0·12 to 0·39, RD −10·6%, 95% CI −12·5 to −7·7; low certainty). Unadjusted studies and subgroup and sensitivity analyses showed similar findings. Interpretation The findings of this systematic review and meta-analysis support physical distancing of 1 m or more and provide quantitative estimates for models and contact tracing to inform policy. Optimum use of face masks, respirators, and eye protection in public and health-care settings should be informed by these findings and contextual factors. Robust randomised trials are needed to better inform the evidence for these interventions, but this systematic appraisal of currently best available evidence might inform interim guidance. Funding World Health Organization.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV2)

            Estimation of the prevalence and contagiousness of undocumented novel coronavirus (SARS-CoV2) infections is critical for understanding the overall prevalence and pandemic potential of this disease. Here we use observations of reported infection within China, in conjunction with mobility data, a networked dynamic metapopulation model and Bayesian inference, to infer critical epidemiological characteristics associated with SARS-CoV2, including the fraction of undocumented infections and their contagiousness. We estimate 86% of all infections were undocumented (95% CI: [82%–90%]) prior to 23 January 2020 travel restrictions. Per person, the transmission rate of undocumented infections was 55% of documented infections ([46%–62%]), yet, due to their greater numbers, undocumented infections were the infection source for 79% of documented cases. These findings explain the rapid geographic spread of SARS-CoV2 and indicate containment of this virus will be particularly challenging.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020

              On 5 February 2020, in Yokohama, Japan, a cruise ship hosting 3,711 people underwent a 2-week quarantine after a former passenger was found with COVID-19 post-disembarking. As at 20 February, 634 persons on board tested positive for the causative virus. We conducted statistical modelling to derive the delay-adjusted asymptomatic proportion of infections, along with the infections’ timeline. The estimated asymptomatic proportion was 17.9% (95% credible interval (CrI): 15.5–20.2%). Most infections occurred before the quarantine start.
                Bookmark

                Author and article information

                Journal
                Infect Dis Model
                Infect Dis Model
                Infectious Disease Modelling
                KeAi Publishing
                2468-2152
                2468-0427
                23 February 2021
                23 February 2021
                Affiliations
                [a ]School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Ireland
                [b ]Environmental Research Institute, University College Cork, Cork, Ireland
                [c ]School of Public Health, University College Cork, Cork, Ireland
                [d ]Wide Bay Public Health Unit, Queensland, Australia
                [e ]Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
                Author notes
                []Corresponding author. School of Biological, Earth & Environmental Sciences, University College Cork, Cork, Ireland.
                Article
                S2468-0427(21)00017-8
                10.1016/j.idm.2021.02.002
                7901309
                33644500
                869309dc-24c1-4b6d-ae46-bbfebedbebc1
                .

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 25 October 2020
                : 21 January 2021
                : 16 February 2021
                Categories
                Article

                coronavirus,covid,sars2,severe acute respiratory syndrome coronavirus 2,sars-cov-2,model,epidemiology,outbreak,case and contact management,sars-cov-2, severe acute respiratory syndrome coronavirus 2

                Comments

                Comment on this article