34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparison of insulin lispro protamine suspension versus insulin glargine once daily added to oral antihyperglycaemic medications and exenatide in type 2 diabetes: a prospective randomized open-label trial

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aims

          To compare efficacy and safety of two, once-daily basal insulin formulations [insulin lispro protamine suspension (ILPS) vs. insulin glargine (glargine)] added to oral antihyperglycaemic medications (OAMs) and exenatide BID in suboptimally controlled type 2 diabetes (T2D) patients.

          Methods

          This 24-week, open-label, multicentre trial randomized patients to bedtime ILPS (n = 171) or glargine (n = 168). Non-inferiority of ILPS versus glargine was assessed by comparing the upper limit of 95% confidence intervals (CIs) for change in haemoglobin A1c (HbA1c) from baseline to week 24 (adjusted for baseline HbA1c) with non-inferiority margin 0.4%.

          Results

          Non-inferiority of ILPS versus glargine was demonstrated: least-squares mean between-treatment difference (ILPS minus glargine) (95% CI) was 0.22% (0.06, 0.38). Mean HbA1c reduction was less for ILPS- versus glargine-treated patients (−1.16 ± 0.84 vs. −1.40 ± 0.97%, p = 0.008). Endpoint HbA1c < 7.0% was achieved by 53.7% (ILPS) and 61.7% (glargine) (p = NS). Overall hypoglycaemia rates (p = NS) and severe hypoglycaemia incidence (p = NS) were similar. Nocturnal hypoglycaemia rate was higher in patients treated with ILPS versus glargine (p = 0.004). Weight gain was similar between groups (ILPS: 0.27 ± 3.38 kg; glargine: 0.66 ± 3.93 kg, p = NS). Endpoint total insulin doses were lower in patients treated with ILPS versus glargine (0.30 ± 0.17 vs. 0.37 ± 0.17 IU/kg/day, p < 0.001).

          Conclusions

          ILPS was non-inferior to glargine for HbA1c change over 24 weeks, but was associated with less HbA1c reduction and more nocturnal hypoglycaemia. Treat-to-target basal insulin therapy improves glycaemic control and is associated with minimal weight gain when added to OAMs and exenatide BID for suboptimally controlled T2D.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus.

          In healthy humans, the incretin glucagon-like peptide 1 (GLP-1) is secreted after eating and lowers glucose concentrations by augmenting insulin secretion and suppressing glucagon release. Additional effects of GLP-1 include retardation of gastric emptying, suppression of appetite and, potentially, inhibition of β-cell apoptosis. Native GLP-1 is degraded within ~2-3 min in the circulation; various GLP-1 receptor agonists have, therefore, been developed to provide prolonged in vivo actions. These GLP-1 receptor agonists can be categorized as either short-acting compounds, which provide short-lived receptor activation (such as exenatide and lixisenatide) or as long-acting compounds (for example albiglutide, dulaglutide, exenatide long-acting release, and liraglutide), which activate the GLP-1 receptor continuously at their recommended dose. The pharmacokinetic differences between these drugs lead to important differences in their pharmacodynamic profiles. The short-acting GLP-1 receptor agonists primarily lower postprandial blood glucose levels through inhibition of gastric emptying, whereas the long-acting compounds have a stronger effect on fasting glucose levels, which is mediated predominantly through their insulinotropic and glucagonostatic actions. The adverse effect profiles of these compounds also differ. The individual properties of the various GLP-1 receptor agonists might enable incretin-based treatment of type 2 diabetes mellitus to be tailored to the needs of each patient.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The treat-to-target trial: randomized addition of glargine or human NPH insulin to oral therapy of type 2 diabetic patients.

            To compare the abilities and associated hypoglycemia risks of insulin glargine and human NPH insulin added to oral therapy of type 2 diabetes to achieve 7% HbA(1c). In a randomized, open-label, parallel, 24-week multicenter trial, 756 overweight men and women with inadequate glycemic control (HbA(1c) >7.5%) on one or two oral agents continued prestudy oral agents and received bedtime glargine or NPH once daily, titrated using a simple algorithm seeking a target fasting plasma glucose (FPG)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Liraglutide vs insulin glargine and placebo in combination with metformin and sulfonylurea therapy in type 2 diabetes mellitus (LEAD-5 met+SU): a randomised controlled trial

              Aims/hypothesis The aim of the study was to compare the efficacy and safety of liraglutide in type 2 diabetes mellitus vs placebo and insulin glargine (A21Gly,B31Arg,B32Arg human insulin), all in combination with metformin and glimepiride. Methods This randomised (using a telephone or web-based randomisation system), parallel-group, controlled 26 week trial of 581 patients with type 2 diabetes mellitus on prior monotherapy (HbA1c 7.5–10%) and combination therapy (7.0–10%) was conducted in 107 centres in 17 countries. The primary endpoint was HbA1c. Patients were randomised (2:1:2) to liraglutide 1.8 mg once daily (n = 232), liraglutide placebo (n = 115) and open-label insulin glargine (n = 234), all in combination with metformin (1 g twice daily) and glimepiride (4 mg once daily). Investigators, participants and study monitors were blinded to the treatment status of the liraglutide and placebo groups at all times. Results The number of patients analysed as intention to treat were: liraglutide n = 230, placebo n = 114, insulin glargine n = 232. Liraglutide reduced HbA1c significantly vs glargine (1.33% vs 1.09%; −0.24% difference, 95% CI 0.08, 0.39; p = 0.0015) and placebo (−1.09% difference, 95% CI 0.90, 1.28; p < 0.0001). There was greater weight loss with liraglutide vs placebo (treatment difference –1.39 kg, 95% CI 2.10, 0.69; p = 0.0001), and vs glargine (treatment difference −3.43 kg, 95% CI 4.00, 2.86; p < 0.0001). Liraglutide reduced systolic BP (−4.0 mmHg) vs glargine (+0.5 mmHg; −4.5 mmHg difference, 95% CI 6.8, −2.2; p = 0.0001) but not vs placebo (p = 0.0791). Rates of hypoglycaemic episodes (major, minor and symptoms only, respectively) were 0.06, 1.2 and 1.0 events/patient/year, respectively, in the liraglutide group (vs 0, 1.3, 1.8 and 0, 1.0, 0.5 with glargine and placebo, respectively). A slightly higher number of adverse events (including nausea at 14%) were reported with liraglutide, but only 9.8% of participants in the group receiving liraglutide developed anti-liraglutide antibodies. Conclusions/interpretation Liraglutide added to metformin and sulfonylurea produced significant improvement in glycaemic control and bodyweight compared with placebo and insulin glargine. The difference vs insulin glargine in HbA1c was within the predefined non-inferiority margin. Trial registration: ClinicalTrials.gov NCT00331851 Funding: The study was funded by Novo Nordisk A/S. Electronic supplementary material The online version of this article (doi:10.1007/s00125-009-1472-y) contains a list of members of the LEAD-5 Study Group, which is available to authorised users.
                Bookmark

                Author and article information

                Journal
                Diabetes Obes Metab
                Diabetes Obes Metab
                dom
                Diabetes, Obesity & Metabolism
                Blackwell Publishing Ltd (Oxford, UK )
                1462-8902
                1463-1326
                June 2014
                29 December 2013
                : 16
                : 6
                : 510-518
                Affiliations
                [1 ]School of Medicine, University of Hawaii at Manoa Honolulu, HI, USA
                [2 ]Texas Diabetes and Endocrinology Austin, TX, USA
                [3 ]Diabetes and Metabolism Associates New Orleans, LA, USA
                [4 ]Rocky Mountain Diabetes and Osteoporosis Center Idaho Falls, ID, USA
                [5 ]Lilly Diabetes, Eli Lilly and Company Indianapolis, IN, USA
                Author notes
                Correspondence to: Richard F. Arakaki, MD, School of Medicine, University of Hawaii School of Medicine, 550 S Beretania Street, Ste. 501, Honolulu, HI 96813, USA. E-mail: rfarakak@ 123456hawaii.edu
                Article
                10.1111/dom.12242
                4237556
                24298995
                86b619d3-4841-491b-9d56-eb6d31709d13
                © 2013 The Authors. Diabetes, Obesity and Metabolism published by JohnWiley & Sons Ltd.

                This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 12 August 2013
                : 25 August 2013
                : 18 November 2013
                Categories
                Original Articles

                Endocrinology & Diabetes
                exenatide,glucagon-like peptide-1 receptor agonist therapy,glycaemic control,hba1c,hypoglycaemia,insulin glargine,insulin lispro protamine suspension,type 2 diabetes

                Comments

                Comment on this article