102
views
1
recommends
+1 Recommend
1 collections
    3
    shares
      OncoTargets and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the pathological basis of cancers, potential targets for therapy and treatment protocols to improve the management of cancer patients. Publishing high-quality, original research on molecular aspects of cancer, including the molecular diagnosis, since 2008. Sign up for email alerts here. 50,877 Monthly downloads/views I 4.345 Impact Factor I 7.0 CiteScore I 0.81 Source Normalized Impact per Paper (SNIP) I 0.811 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Epigenomic analysis of lung adenocarcinoma reveals novel DNA methylation patterns associated with smoking

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The importance of epigenetic regulation has been increasingly recognized in the development of cancer. In this study, we investigated the impact of smoking, a major risk factor of lung cancer, on DNA methylation by comparing the genome-wide DNA methylation patterns between lung adenocarcinoma samples from six smokers and six nonsmokers. We identified that smoking-induced DNA methylations were enriched in the calcium signaling and neuroactive ligand receptor signaling pathways, which are closely related to smoking-induced lung cancers. Interestingly, we discovered that two genes in the mitogen-activated protein kinase signaling pathway ( RPS6KA3 and ARAF) were hypomethylated in smokers but not in nonsmokers. In addition, we found that the smoking-induced lung cancer-specific DNA methylations were mostly enriched in nuclear activities, including regulation of gene expression and chromatin remodeling. Moreover, the smoking-induced hypermethylation could only be seen in lung adenocarcinoma tissue but not in adjacent normal lung tissue. We also used differentially methylated DNA loci to construct a diagnostic model to distinguish smoking-associated lung cancer from nonsmoking lung cancer with a sensitivity of 88.9% and specificity of 83.2%. Our results provided novel evidence to support that smoking can cause dramatic changes in the DNA methylation landscape of lung cancer, suggesting that epigenetic regulation of specific oncogenic signaling pathways plays an important role in the development of lung cancer.

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: not found

          The neuropeptide galanin and variants in the GalR1 gene are associated with nicotine dependence.

          The neuropeptide galanin and its receptors are expressed in brain regions implicated in drug dependence. Indeed, several lines of evidence support a role for galanin in modulating the effects of drugs of abuse, including morphine, cocaine, amphetamine, and alcohol. Despite these findings, the role of galanin and its receptors in the effects of nicotine is largely underexplored. Here, using mouse models of nicotine reward and withdrawal, we show that there is a significant correlation between mecamylamine-precipitated nicotine withdrawal somatic signs and basal galanin or galanin receptor 1 (GALR1) expression in mesolimbocortical dopamine regions across the BXD battery of recombinant inbred mouse lines. The non-peptide galanin receptor agonist, galnon, also blocks nicotine rewarding effects and reverses mecamylamine-precipitated nicotine withdrawal signs in ICR mice. Additionally, we conducted a meta-analysis using smoking information from six European-American and African-American data sets. In support of our animal data, results from the association study show that variants in the GALR1 gene are associated with a protective effect in nicotine dependence (ND). Taken together, our data suggest that galanin has a protective role against progression to ND, and these effects may be mediated through GALR1.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced pulmonary adenocarcinomas in Syrian golden hamsters contain beta 2-adrenergic receptor single-nucleotide polymorphisms.

            Cigarette smoking contributes to the development of lung cancer throughout the world, with cases of pulmonary adenocarcinoma (PAC) the most numerous. Nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), which is formed from nicotine, has been demonstrated to cause mutations in genes that affect cell regulation and proliferation. Moreover, NNK has been shown to interact directly with and stimulate beta adrenergic receptor (ADRB) signal transduction pathways. Our goal was to determine whether single-nucleotide polymorphisms (SNPs) in the Adrb2 from PAC tumors were induced in golden hamsters by the injection of NNK. Here we report the cloning and sequencing of Adrb2 clones from either dissected lung tumors from NNK-injected animals or whole-lung tissue from water-injected controls. Both sets of animals contained SNPs; however, we found significantly more SNPs in the Adrb2 from NNK-injected animals than in the controls. The majority of these SNPs were novel, nonsynonymous mutations found in regions of the Adrb2 known to be involved in ligand binding, G-protein coupling, and desensitization/down-regulation. Our data verified the mutagenic effects of NNK as well as demonstrated that this animal model provides an outstanding way of identifying mutations not only in the Adrb2, but also in other genes that may play essential roles in the regulation and growth of pulmonary adenocarcinomas.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Coordinated changes in AHRR methylation in lymphoblasts and pulmonary macrophages from smokers

                Bookmark

                Author and article information

                Journal
                Onco Targets Ther
                Onco Targets Ther
                OncoTargets and Therapy
                OncoTargets and therapy
                Dove Medical Press
                1178-6930
                2013
                21 October 2013
                : 6
                : 1471-1479
                Affiliations
                [1 ]Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
                [2 ]Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
                Author notes
                Correspondence: Shun Lu or Qian Tao, Shanghai Lung Tumor Clinical Medical Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China, Tel 86 21 6282 1990, Fax 86 21 6280 4970, Email shun_lu@ 123456hotmail.com or qtao@ 123456clo.cuhk.edu.hk

                *These authors contributed equally to this paper

                Article
                ott-6-1471
                10.2147/OTT.S51041
                3818101
                24204162
                86ccda65-b6df-4753-ae41-01c7d2f01ae1
                © 2013 Tan et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Oncology & Radiotherapy
                lung cancer,epigenome,methylation,tumor suppressor gene,smoking
                Oncology & Radiotherapy
                lung cancer, epigenome, methylation, tumor suppressor gene, smoking

                Comments

                Comment on this article