5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Eco-immunology of native and invasive water bugs in response to water mite parasites: insights from phenoloxidase activity

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Introduced species and their missing parasites.

          Damage caused by introduced species results from the high population densities and large body sizes that they attain in their new location. Escape from the effects of natural enemies is a frequent explanation given for the success of introduced species. Because some parasites can reduce host density and decrease body size, an invader that leaves parasites behind and encounters few new parasites can experience a demographic release and become a pest. To test whether introduced species are less parasitized, we have compared the parasites of exotic species in their native and introduced ranges, using 26 host species of molluscs, crustaceans, fishes, birds, mammals, amphibians and reptiles. Here we report that the number of parasite species found in native populations is twice that found in exotic populations. In addition, introduced populations are less heavily parasitized (in terms of percentage infected) than are native populations. Reduced parasitization of introduced species has several causes, including reduced probability of the introduction of parasites with exotic species (or early extinction after host establishment), absence of other required hosts in the new location, and the host-specific limitations of native parasites adapting to new hosts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Immune defense and host life history.

            Recent interest has focused on immune response in an evolutionary context, with particular attention to disease resistance as a life-history trait, subject to trade-offs against other traits such as reproductive effort. Immune defense has several characteristics that complicate this approach, however; for example, because of the risk of autoimmunity, optimal immune defense is not necessarily maximum immune defense. Two important types of cost associated with immunity in the context of life history are resource costs, those related to the allocation of essential but limited resources, such as energy or nutrients, and option costs, those paid not in the currency of resources but in functional or structural components of the organism. Resource and option costs are likely to apply to different aspects of resistance. Recent investigations into possible trade-offs between reproductive effort, particularly sexual displays, and immunity have suggested interesting functional links between the two. Although all organisms balance the costs of immune defense against the requirements of reproduction, this balance works out differently for males than it does for females, creating sex differences in immune response that in turn are related to ecological factors such as the mating system. We conclude that immune response is indeed costly and that future work would do well to include invertebrates, which have sometimes been neglected in studies of the ecology of immune defense.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of the prophenoloxidase-activating system in invertebrate immunity.

              The melanization reaction, which is a common response to parasite entry in invertebrate animals, especially arthropods, is due to the activity of an oxidoreductase, phenoloxidase. This enzyme is part of a complex system of proteinases, pattern recognition proteins and proteinase inhibitors constituting the so-called prophenoloxidase-activating system. It is proposed to be a non-self recognition system because conversion of prophenoloxidase to active enzyme can be brought about by minuscule amounts of molecules such as lipopolysaccharide, peptidoglycan and beta-1, 3-glucans from micro-organisms. Several components of this system recently have been isolated and their structure determined.
                Bookmark

                Author and article information

                Journal
                Biological Invasions
                Biol Invasions
                Springer Science and Business Media LLC
                1387-3547
                1573-1464
                July 2019
                April 6 2019
                July 2019
                : 21
                : 7
                : 2431-2445
                Article
                10.1007/s10530-019-01988-w
                877b4a54-bdfa-40e0-81ef-3f2bb96c9f78
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article