8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interactions among threats affect conservation management outcomes: Livestock grazing removes the benefits of fire management for small mammals in Australian tropical savannas

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Synergies among extinction drivers under global change.

          If habitat destruction or overexploitation of populations is severe, species loss can occur directly and abruptly. Yet the final descent to extinction is often driven by synergistic processes (amplifying feedbacks) that can be disconnected from the original cause of decline. We review recent observational, experimental and meta-analytic work which together show that owing to interacting and self-reinforcing processes, estimates of extinction risk for most species are more severe than previously recognised. As such, conservation actions which only target single-threat drivers risk being inadequate because of the cascading effects caused by unmanaged synergies. Future work should focus on how climate change will interact with and accelerate ongoing threats to biodiversity, such as habitat degradation, overexploitation and invasive species.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interactive effects of habitat modification and species invasion on native species decline.

            Different components of global environmental change are often studied and managed independently, but mounting evidence points towards complex non-additive interaction effects between drivers of native species decline. Using the example of interactions between land-use change and biotic exchange, we develop an interpretive framework that will enable global change researchers to identify and discriminate between major interaction pathways. We formalise a distinction between numerically mediated versus functionally moderated causal pathways. Despite superficial similarity of their effects, numerical and functional pathways stem from fundamentally different mechanisms of action and have fundamentally different consequences for conservation management. Our framework is a first step toward building a better quantitative understanding of how interactions between drivers might mitigate or exacerbate the net effects of global environmental change on biotic communities in the future.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pyric herbivory: rewilding landscapes through the recoupling of fire and grazing.

              Our understanding of fire and grazing is largely based on small-scale experimental studies in which treatments are uniformly applied to experimental units that are considered homogenous. Any discussion of an interaction between fire and grazing is usually based on a statistical approach that ignores the spatial and temporal interactions on complex landscapes. We propose a new focus on the ecological interaction of fire and grazing in which each disturbance is spatially and temporally dependent on the other and results in a landscape where disturbance is best described as a shifting mosaic (a landscape with patches that vary with time since disturbance) that is critical to ecological structure and function of many ecosystems. We call this spatiotemporal interaction pyric herbivory (literal interpretation means grazing driven by fire). Pyric herbivory is the spatial and temporal interaction of fire and grazing, where positive and negative feedbacks promote a shifting pattern of disturbance across the landscape. We present data we collected from the Tallgrass Prairie Preserve in the southern Great Plains of North America that demonstrates that the interaction between free-roaming bison (Bison bison) and random fires promotes heterogeneity and provides the foundation for biological diversity and ecosystem function of North American and African grasslands. This study is different from other studies of fire and grazing because the fires we examined were random and grazing animals were free to roam and select from burned and unburned patches. For ecosystems across the globe with a long history of fire and grazing, pyric herbivory with any grazing herbivore is likely more effective at restoring evolutionary disturbance patterns than a focus on restoring any large vertebrate while ignoring the interaction with fire and other disturbances. ©2008 Society for Conservation Biology.
                Bookmark

                Author and article information

                Journal
                Conservation Science and Practice
                Conservat Sci and Prac
                Wiley
                2578-4854
                2578-4854
                May 29 2019
                July 2019
                May 22 2019
                July 2019
                : 1
                : 7
                Affiliations
                [1 ]Australian Wildlife ConservancyMornington Sanctuary Derby Western Australia Australia
                [2 ]Fenner School of Environment & SocietyThe Australian National University Canberra Australian Capital Territory Australia
                [3 ]Centre for Biodiversity and Conservation ScienceUniversity of Queensland St Lucia Queensland Australia
                [4 ]Research Institute of Environment and LivelihoodsCharles Darwin University Casuarina Northwest Territories Australia
                [5 ]Arid Recovery Roxby Downs South Australia Australia
                Article
                10.1111/csp2.52
                878f940e-4101-49b6-af37-810e4bb71c8b
                © 2019

                http://creativecommons.org/licenses/by/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article