Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Myofibroblasts.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Myofibroblasts are activated in response to tissue injury with the primary task to repair lost or damaged extracellular matrix. Enhanced collagen secretion and subsequent contraction - scarring - are part of the normal wound healing response and crucial to restore tissue integrity. Due to myofibroblasts ability to repair but not regenerate, accumulation of scar tissue is always associated with reduced organ performance. This is a fair price to pay by the body for not falling apart. Whereas myofibroblasts typically vanish after successful repair, dysregulation of the normal repair process can lead to persistent myofibroblast activation, for instance by chronic inflammation or mechanical stress in the tissue. Excessive repair leads to the accumulation of stiff collagenous ECM contractures - fibrosis - with dramatic consequences for organ function. The clinical need to terminate detrimental myofibroblast activities has stimulated researchers to answer a number of essential questions: where do myofibroblasts come from, what are the factors leading to their activation, how do we discriminate myofibroblasts from other cells, what is the molecular basis for their contractile activity, and how can we stop or at least control them? This article reviews the current state of the myofibroblast literature by emphasizing their role in ocular repair and fibrosis. It appears that although the eye is quite an extraordinary organ, ocular myofibroblasts behave or misbehave just like their siblings in other organs.

          Related collections

          Author and article information

          Journal
          Exp. Eye Res.
          Experimental eye research
          1096-0007
          0014-4835
          Jan 2016
          : 142
          Affiliations
          [1 ] Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, 150 College Street, FitzGerald Building, Room 234, Toronto, M5S 3E2 Ontario, Canada. Electronic address: boris.hinz@utoronto.ca.
          Article
          S0014-4835(15)00229-8
          10.1016/j.exer.2015.07.009
          26192991
          87b6d92c-7bb2-4b4e-9516-ddcb55de459f
          Copyright © 2015 Elsevier Ltd. All rights reserved.
          History

          Contraction,Contracture,Fibrosis,Inflammation,Scar,Stress fiber,Transforming growth factor beta,α-smooth muscle actin

          Comments

          Comment on this article