0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Model‐Based Drug–Drug Interaction Extrapolation Strategy From Adults to Children: Risdiplam in Pediatric Patients With Spinal Muscular Atrophy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Risdiplam (Evrysdi) improves motor neuron function in patients with spinal muscular atrophy (SMA) and has been approved for the treatment of patients ≥2 months old. Risdiplam exhibits time‐dependent inhibition of cytochrome P450 (CYP) 3A in vitro. While many pediatric patients receive risdiplam, a drug–drug interaction (DDI) study in pediatric patients with SMA was not feasible. Therefore, a novel physiologically‐based pharmacokinetic (PBPK) model‐based strategy was proposed to extrapolate DDI risk from healthy adults to children with SMA in an iterative manner. A clinical DDI study was performed in healthy adults at relevant risdiplam exposures observed in children. Risdiplam caused an 1.11‐fold increase in the ratio of midazolam area under the curve with and without risdiplam (AUCR)), suggesting an 18‐fold lower in vivo CYP3A inactivation constant compared with the in vitro value. A pediatric PBPK model for risdiplam was validated with independent data and combined with a validated midazolam pediatric PBPK model to extrapolate DDI from adults to pediatric patients with SMA. The impact of selected intestinal and hepatic CYP3A ontogenies on the DDI susceptibility in children relative to adults was investigated. The PBPK analysis suggests that primary CYP3A inhibition by risdiplam occurs in the intestine rather than the liver. The PBPK‐predicted risdiplam CYP3A inhibition risk in pediatric patients with SMA aged 2 months–18 years was negligible (midazolam AUCR of 1.09–1.18) and included in the US prescribing information of risdiplam. Comprehensive evaluation of the sensitivity of predicted CYP3A DDI on selected intestinal and hepatic CYP3A ontogeny functions, together with PBPK model‐based strategy proposed here, aim to guide and facilitate DDI extrapolations in pediatric populations.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Spinal muscular atrophy

          Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease characterized by degeneration of alpha motor neurons in the spinal cord, resulting in progressive proximal muscle weakness and paralysis. Estimated incidence is 1 in 6,000 to 1 in 10,000 live births and carrier frequency of 1/40-1/60. This disease is characterized by generalized muscle weakness and atrophy predominating in proximal limb muscles, and phenotype is classified into four grades of severity (SMA I, SMAII, SMAIII, SMA IV) based on age of onset and motor function achieved. This disease is caused by homozygous mutations of the survival motor neuron 1 (SMN1) gene, and the diagnostic test demonstrates in most patients the homozygous deletion of the SMN1 gene, generally showing the absence of SMN1 exon 7. The test achieves up to 95% sensitivity and nearly 100% specificity. Differential diagnosis should be considered with other neuromuscular disorders which are not associated with increased CK manifesting as infantile hypotonia or as limb girdle weakness starting later in life. Considering the high carrier frequency, carrier testing is requested by siblings of patients or of parents of SMA children and are aimed at gaining information that may help with reproductive planning. Individuals at risk should be tested first and, in case of testing positive, the partner should be then analyzed. It is recommended that in case of a request on carrier testing on siblings of an affected SMA infant, a detailed neurological examination should be done and consideration given doing the direct test to exclude SMA. Prenatal diagnosis should be offered to couples who have previously had a child affected with SMA (recurrence risk 25%). The role of follow-up coordination has to be managed by an expert in neuromuscular disorders and in SMA who is able to plan a multidisciplinary intervention that includes pulmonary, gastroenterology/nutrition, and orthopedic care. Prognosis depends on the phenotypic severity going from high mortality within the first year for SMA type 1 to no mortality for the chronic and later onset forms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Discovery of Risdiplam, a Selective Survival of Motor Neuron-2 (SMN2) Gene Splicing Modifier for the Treatment of Spinal Muscular Atrophy (SMA)

            SMA is an inherited disease that leads to loss of motor function and ambulation and a reduced life expectancy. We have been working to develop orally administrated, systemically distributed small molecules to increase levels of functional SMN protein. Compound 2 was the first SMN2 splicing modifier tested in clinical trials in healthy volunteers and SMA patients. It was safe and well tolerated and increased SMN protein levels up to 2-fold in patients. Nevertheless, its development was stopped as a precautionary measure because retinal toxicity was observed in cynomolgus monkeys after chronic daily oral dosing (39 weeks) at exposures in excess of those investigated in patients. Herein, we describe the discovery of 1 (risdiplam, RG7916, RO7034067) that focused on thorough pharmacology, DMPK and safety characterization and optimization. This compound is undergoing pivotal clinical trials and is a promising medicine for the treatment of patients in all ages and stages with SMA.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification and characterization of a spinal muscular atrophy-determining gene.

              Spinal muscular atrophy (SMA) is a common fatal autosomal recessive disorder characterized by degeneration of lower motor neurons, leading to progressive paralysis with muscular atrophy. The gene for SMA has been mapped to chromosome 5q13, where large-scale deletions have been reported. We describe here the inverted duplication of a 500 kb element in normal chromosomes and narrow the critical region to 140 kb within the telomeric region. This interval contains a 20 kb gene encoding a novel protein of 294 amino acids. An highly homologous gene is present in the centromeric element of 95% of controls. The telomeric gene is either lacking or interrupted in 226 of 229 patients, and patients retaining this gene (3 of 229) carry either a point mutation (Y272C) or short deletions in the consensus splice sites of introns 6 and 7. These data suggest that this gene, termed the survival motor neuron (SMN) gene, is an SMA-determining gene.
                Bookmark

                Author and article information

                Contributors
                yumi.cleary@roche.com
                Journal
                Clin Pharmacol Ther
                Clin Pharmacol Ther
                10.1002/(ISSN)1532-6535
                CPT
                Clinical Pharmacology and Therapeutics
                John Wiley and Sons Inc. (Hoboken )
                0009-9236
                1532-6535
                01 September 2021
                December 2021
                01 September 2021
                : 110
                : 6 ( doiID: 10.1002/cpt.v110.6 )
                : 1547-1557
                Affiliations
                [ 1 ] Roche Pharma Research and Early Development Pharmaceutical Sciences Roche Innovation Center Basel Switzerland
                [ 2 ] Centre for Applied Pharmacokinetic Research University of Manchester Manchester UK
                [ 3 ] Roche Pharma Research and Early Development Pharmaceutical Sciences Roche Innovation Center Welwyn UK
                Author notes
                [*] [* ] Correspondence: Yumi Cleary ( yumi.cleary@ 123456roche.com )

                [†]

                The first two authors contributed equally to this work.

                Article
                CPT2384
                10.1002/cpt.2384
                9291816
                34347881
                87ce5b17-53ad-465e-ad67-d2ae740d5492
                © 2021 F Hoffmann-La Roche AG. Clinical Pharmacology & Therapeutics published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

                History
                : 24 March 2021
                : 14 July 2021
                Page count
                Figures: 4, Tables: 2, Pages: 11, Words: 7913
                Funding
                Funded by: F. Hoffmann‐La Roche , doi 10.13039/100007013;
                Categories
                Article
                Research
                Articles
                Custom metadata
                2.0
                December 2021
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.1.7 mode:remove_FC converted:18.07.2022

                Pharmacology & Pharmaceutical medicine
                Pharmacology & Pharmaceutical medicine

                Comments

                Comment on this article