47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ultraviolet A-Induced Cathepsin K Expression Is Mediated via MAPK/AP-1 Pathway in Human Dermal Fibroblasts

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Cathepsin K (CatK), a cysteine protease with the potent elastolytic activity, plays a predominant role in intracellular elastin degradation in human dermal fibroblasts (HDFs), and contributes to solar elastosis. In previous studies, CatK expression was downregulated in photoaged skin and fibroblasts, but upregulated in acute UVA-irradiated skin and fibroblasts. The underlying mechanisms regulating UVA-induced CatK expression remain elusive.

          Objective

          This study investigates mechanisms involved in the regulation of UVA-induced CatK expression in HDFs.

          Methods

          Primary HDFs were exposed to UVA. Cell proliferation was analyzed using a colorimetric assay of relative cell number. Quantitative real-time RT-PCR and Western blot were performed to detect CatK expression in HDFs on three consecutive days after 10 J/cm 2 UVA irradiation, or cells treated with increasing UVA doses. UVA-activated MAPK/AP-1 pathway was examined by Western blot. Effects of inhibition of MAPK pathway and knockdown of Jun and Fos on UVA-induced CatK expression were also measured by real-time RT-PCR and Western blot.

          Results

          UVA significantly increased CatK mRNA and protein expression in a dose-dependent manner. UVA-induced CatK expression occurred along with UVA-activated phosphorylation of JNK, p38 and Jun, UVA-increased expression of Fos. Inactivation of JNK and p38MAPK pathways both remarkably decreased UVA-induced CatK expression, which was suppressed more by inhibition of JNK pathway. Furthermore, knockdown of Jun and Fos significantly attenuated basal and UVA-induced CatK expression.

          Conclusion

          UVA is capable of increasing CatK expression in HDFs, most likely by activation of MAPK pathway and of AP-1, which has been shown to be the case for matrix metalloproteinases. As current strategies for selecting anti-photoaging agents focus on their ability to decrease MMPs' expression through inhibiting UV- activated MAPK pathway, future strategies should also consider their effect on CatK expression.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Essential role of p38 mitogen-activated protein kinase in cathepsin K gene expression during osteoclastogenesis through association of NFATc1 and PU.1.

          The receptor activator of NF-kappaB ligand (RANKL) induces various osteoclast-specific marker genes during osteoclast differentiation mediated by mitogen-activated protein (MAP) kinase cascades. However, the results of transcriptional programming of an osteoclast-specific cathepsin K gene are inconclusive. Here we report the regulatory mechanisms of RANKL-induced cathepsin K gene expression during osteoclastogenesis in a p38 MAP kinase-dependent manner. The reporter gene analysis with sequential 5'-deletion constructs of the cathepsin K gene promoter indicates that limited sets of the transcription factors such as NFATc1, PU.1, and microphthalmia transcription factor indeed enhance synergistically the gene expression when overexpressed in RAW264 cells. In addition, the activation of p38 MAP kinase is required for the maximum enhancement of the gene expression. RANKL-induced NFATc1 forms a complex with PU.1 in nuclei of osteoclasts following the nuclear accumulation of NFATc1 phosphorylated by the activated p38 MAP kinase. These results suggest that the RANKL-induced cathepsin K gene expression is cooperatively regulated by the combination of the transcription factors and p38 MAP kinase in a gradual manner.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanisms of photoaging and chronological skin aging.

            Human skin, like all other organs, undergoes chronological aging. In addition, unlike other organs, skin is in direct contact with the environment and therefore undergoes aging as a consequence of environmental damage. The primary environmental factor that causes human skin aging is UV irradiation from the sun. This sun-induced skin aging (photoaging), like chronological aging, is a cumulative process. However, unlike chronological aging, which depends on the passage of time per se, photoaging depends primarily on the degree of sun exposure and skin pigment. Individuals who have outdoor lifestyles, live in sunny climates, and are lightly pigmented will experience the greatest degree of photoaging. During the last decade, substantial progress has been made in understanding cellular and molecular mechanisms that bring about chronological aging and photoaging. This emerging information reveals that chronological aging and photoaging share fundamental molecular pathways. These new insights regarding convergence of the molecular basis of chronological aging and photoaging provide exciting new opportunities for the development of new anti-aging therapies. This article reviews our current understanding and presents new data about the molecular pathways that mediate skin damage by UV irradiation and by the passage of time.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Solar ultraviolet irradiation reduces collagen in photoaged human skin by blocking transforming growth factor-beta type II receptor/Smad signaling.

              Ultraviolet (UV) irradiation from the sun reduces production of type I procollagen (COLI), the major structural protein in human skin. This reduction is a key feature of the pathophysiology of premature skin aging (photoaging). Photoaging is the most common form of skin damage and is associated with skin carcinoma. TGF-beta/Smad pathway is the major regulator of type I procollagen synthesis in human skin. We have previously reported that UV irradiation impairs transforming growth factor-beta (TGF-beta)/Smad signaling in mink lung epithelial cells. We have investigated the mechanism of UV irradiation impairment of the TGF-beta/Smad pathway and the impact of this impairment on type I procollagen production in human skin fibroblasts, the major collagen-producing cells in skin. We report here that UV irradiation impairs TGF-beta/Smad pathway in human skin by down-regulation of TGF-beta type II receptor (TbetaRII). This loss of TbetaRII occurs within 8 hours after UV irradiation and precedes down-regulation of type I procollagen expression in human skin in vivo. In human skin fibroblasts, UV-induced TbetaRII down-regulation is mediated by transcriptional repression and results in 90% reduction of specific, cell-surface binding of TGF-beta. This loss of TbetaRII prevents downstream activation of Smad2/3 by TGF-beta, thereby reducing expression of type I procollagen. Preventing loss of TbetaRII by overexpression protects against UV inhibition of type I procollagen gene expression in human skin fibroblasts. UV-induced down-regulation of TbetaRII, with attendant reduction of type I procollagen production, is a critical molecular mechanism in the pathophysiology of photoaging.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                21 July 2014
                : 9
                : 7
                : e102732
                Affiliations
                [1 ]Department of Dermato-Venereology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
                [2 ]Department of Dermato-Venereology, the First Teaching hospital of Xinjiang Medical University, Urumqi, PR China
                [3 ]Department of Dermatology, School of Medicine, University of California San Francisco, San Francisco, California, United States of America
                National Cancer Centre, Singapore
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: WL QX. Performed the experiments: QX WH YZ. Analyzed the data: C. Liu. Contributed reagents/materials/analysis tools: ZG C. Lu. Wrote the paper: QX HIM.

                Article
                PONE-D-14-08804
                10.1371/journal.pone.0102732
                4105408
                25048708
                88044313-462a-45ec-98bb-55ac2fb19183
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 6 March 2014
                : 20 June 2014
                Page count
                Pages: 11
                Funding
                This work was supported by grants from National Natural Science Foundation of China Research grant (No. 81171523), the Scientific Program of Guangdong Province (No. 2012B031800057). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
                Categories
                Research Article
                Medicine and Health Sciences
                Dermatology
                Photodermatology and Skin Aging
                Skin Diseases

                Uncategorized
                Uncategorized

                Comments

                Comment on this article