2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Facial Expression Recognition: A Survey

      , , ,
      Symmetry
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Facial Expression Recognition (FER), as the primary processing method for non-verbal intentions, is an important and promising field of computer vision and artificial intelligence, and one of the subject areas of symmetry. This survey is a comprehensive and structured overview of recent advances in FER. We first categorise the existing FER methods into two main groups, i.e., conventional approaches and deep learning-based approaches. Methodologically, to highlight the differences and similarities, we propose a general framework of a conventional FER approach and review the possible technologies that can be employed in each component. As for deep learning-based methods, four kinds of neural network-based state-of-the-art FER approaches are presented and analysed. Besides, we introduce seventeen commonly used FER datasets and summarise four FER-related elements of datasets that may influence the choosing and processing of FER approaches. Evaluation methods and metrics are given in the later part to show how to assess FER algorithms, along with subsequent performance comparisons of different FER approaches on the benchmark datasets. At the end of the survey, we present some challenges and opportunities that need to be addressed in future.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: not found
          • Article: not found

          A circumplex model of affect.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A fast learning algorithm for deep belief nets.

            We show how to use "complementary priors" to eliminate the explaining-away effects that make inference difficult in densely connected belief nets that have many hidden layers. Using complementary priors, we derive a fast, greedy algorithm that can learn deep, directed belief networks one layer at a time, provided the top two layers form an undirected associative memory. The fast, greedy algorithm is used to initialize a slower learning procedure that fine-tunes the weights using a contrastive version of the wake-sleep algorithm. After fine-tuning, a network with three hidden layers forms a very good generative model of the joint distribution of handwritten digit images and their labels. This generative model gives better digit classification than the best discriminative learning algorithms. The low-dimensional manifolds on which the digits lie are modeled by long ravines in the free-energy landscape of the top-level associative memory, and it is easy to explore these ravines by using the directed connections to display what the associative memory has in mind.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              An argument for basic emotions

              Paul Ekman (1992)
                Bookmark

                Author and article information

                Contributors
                Journal
                SYMMAM
                Symmetry
                Symmetry
                MDPI AG
                2073-8994
                October 2019
                September 20 2019
                : 11
                : 10
                : 1189
                Article
                10.3390/sym11101189
                8815c5db-8d0b-4973-ba4d-7487b45deb43
                © 2019

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article